The Issue The issue in this case is whether the South Florida Water Management District (SFWMD) should modify Surface Water Management (SWM) Permit No. 50-00548-S, held by the ACME Improvement District (Acme) to authorize alternate SWM facilities within Acme Basin B primarily by: eliminating the water quality function originally provided by a 79-acre retention area known as Peacock Pond pursuant to a 1979 permit; replacing it with adequate alternate methods of water quality treatment; and authorizing an alternative pump operation schedule for the remainder of Acme Basin B. The permit should be modified only if Acme has provided reasonable assurances that the proposed modifications comply with the relevant portions of SFWMD's Environmental Resource Permit (ERP) regulations set forth in: Part IV of Chapter 373, Florida Statutes; Chapter 40E-4, Florida Administrative Code; and the Basis of Review for ERP Applications (BOR) (collectively referred to as ERP criteria).
Findings Of Fact General SFWMD is a public corporation existing by virtue of Chapter 25270, Laws of Florida, 1949, and operating pursuant to Chapter 373, Florida Statutes, and Title 40E, Florida Administrative Code, as a multipurpose water management district with its principal office in West Palm Beach, Florida. Acme is a dependent special district of the Village of Wellington, a municipality of the State of Florida. Polo is a Florida corporation and a developer in the Village of Wellington, Palm Beach County, Florida, including a 79-acre parcel of real property known as Peacock Pond, and other undeveloped property that are part of the subject of this permitting proceeding. Wellington Country Place Property Owners Association, Inc. (POA) is the property owners association for WCPPUD. Permit History 1978 Permit In 1978, SFWMD issued to Acme the original backbone SWM permit for approximately 18,000 acres, including primary drainage Basins A (to the north) and B (to the south). Pierson Road, which runs east/west, is the boundary between the two basins. (The backbone C-23 canal parallels Pierson Road to its immediate north.) Acme Basin A discharges to the C-51 canal, which flows east to the Atlantic Ocean. Acme Basin B, which consists of approximately 8,680 acres, discharges to the Loxahatchee National Wildlife Refuge (Refuge) through two Acme pump stations. The Refuge is part of what is now designated the Everglades Protection Area. The 1978 backbone permit, which modified a still earlier permit, established lower water control elevations in Basin A, which was being developed for urban use, than in Basin B, which was planned to remain largely in agricultural use. Under the 1978 permit, the maintained (regulation) stage in Basin A was set at 11' above mean sea level (msl) with discharge beginning at 12' msl during the wet season and 12' msl with discharge beginning at 13' msl during the dry season. The maintained stage in Basin B remained at 13' msl in both the wet and dry season. Under the 1978 permit, it was anticipated that routing surface water runoff in Basin A through canals and retention lakes would provide the water quality treatment required under the criteria in effect at the time (including a requirement to provide half an inch of detention over the entire Basin A for water quality treatment purposes.) At the time, planned residential development in the extreme southwest corner of Basin B was anticipated to generate only limited quantities of runoff due to the nature of typical development in 5-acre parcels; quality of runoff was expected to be better than from previous agricultural use. Presumably because there would be no change under the 1978 permit, water quality treatment in the remainder of Basin B was not addressed. 1979 Permit By 1979, Acme requested a permit modification for development of the Wellington WCPPUD, which is located entirely within Acme Basin B. The PUD's northern boundary is Pierson Road; the western boundary is the backbone C-2 canal; and the eastern boundary is the backbone C-6 canal. The north/south backbone C-4 canal divides the western third of the PUD from its eastern two-thirds; it also forms the western boundary of the area known as Peacock Pond. The southern boundary of the PUD generally follows the east/west backbone C-24 canal.2 The 1979 permit modification authorized construction and operation of water management facilities in portions of WCPPUD, including a 79-acre pumped retention area (which was to become known as Peacock Pond), pump station, and control structure. Under the 1979 permit, the maintenance stage (water control) elevation within WCPPUD only was set at 12' National Geodetic Vertical Datum (NGVD) (essentially, the same as msl) in the wet season and 13' NGVD in the dry season. The minimum road and finish floor elevations were established at elevation 16' and 17' NGVD, respectively. Without regard to seasonality, the retention area pump station was to begin operation when a stage of 13' NGVD was reached in the adjacent C-4 canal and was to discontinue operation when the system was drawn down to elevation 12' NGVD. The 1979 permit used the 79-acre area known as Peacock Pond as its central water quality feature. Runoff from WCPPUD was to be collected in roadside swales within road right-of-ways and routed by storm sewer inlets and pipe to either a proposed 12-acre lake or one of the collector swales or canals connected to the Peacock Pond site. The 1979 permit contemplated use of the Peacock Pond site as a "retention-type" surface water management facility. Generally, such a facility detains the water, allows the pollutants to settle, then slowly lets the water out. In the 1979 permit, Acme was required to construct a berm or dike around the 79-acre area to create an above-ground impoundment to serve as the retention area. A pump was required to be installed at the northwest corner of Peacock Pond to pump water from the adjacent C-4 canal into the retention area. The berm or dike was to detain water on the site until it reached the level of a gravity flashboard riser outfall structure at the southwest corner of the site, which would be set at 15' NGVD and would return the water to Acme's C-4 canal just downstream of a broad-crested weir, which would be set at 14' NGVD. Additional discharge from the system would be provided by two 72-inch gravity-flow flashboard risers with crest elevation 14' NGVD-- one to the C-4 canal and the other to the C-6 canal. Water discharged from the system would flow south and west through Acme's system of Basin B canals, eventually discharging to the Refuge through the two pump stations to the south and southwest. During a rise in stage in the C-4 from 13' to 14' NGVD, the pump station in the northwest corner of Peacock Pond would continue filling the retention area. Considering pumped inflow of 4000 gallons per minute (gpm), the retention area would take 3.3 days to reach a peak stage of 16'. At that stage, 58 acre-feet of water would be stored within the retention area. SFWMD calculated that Peacock Pond would treat approximately 200 million gallons of water a year in this way. SFWMD and Acme have taken the position in this case that the sole purpose of Peacock Pond in the 1979 permit was to serve as a water quality treatment area for the Wellington WCPPUD. It is true that the 1979 permit contemplated that flood protection for Basin B would be provided through use of the two pumps discharging into the Refuge (Pump #1 capable of pumping at the rate of 100,000 gpm, and Pump #2 capable of pumping at 120,000 gpm). But, as subsequent events showed, the Peacock Pond retention area was part of an overall SWM system for WCPPUD that maintained water stage elevations there at a lower level than in the rest of Basin B. In other words, while designed primarily to provide water quality treatment, and not designated a flood control facility, it had some residual flood control benefit within WCPPUD. Actual Operation After 1979 Permit Although Peacock Pond was critical to the functioning of the SWM system for WCPPUD and Basin B, SFWMD never obtained from the owner the legal right to use it for SWM purposes. From 1979 to 1986, SFWMD was advised that the Peacock Pond facility was in substantial conformance with the permitted conditions. But some time after property, including Peacock Pond, was transferred to Landmark Land Company of Florida, Inc., the pumps in the northwest corner of Peacock Pond stopped being used regularly.3 Instead, Acme water control structure 115 (a 48-inch culvert and 72-inch flashboard riser which replaced the broad- crested weir in the C-4 canal through a 1982 permit modification) and structure 117 (discharging to the C-6 canal) were opened so that water levels in Wellington Country Place equalized with the surrounding Acme Basin B, which was controlled by the two pump stations discharging to the Refuge to the south and southwest. The evidence indicates, for at least the last ten years, the Basin B pumps have been operated to maintain water elevations of 12' NGVD in the wet season and 13' NGVD in the dry season--the same as for the County Place PUD under the 1979 permit. Under this water elevation control regime, flooding within WCPPUD was not a problem, but the water quality treatment from the Peacock Pond facility required under the 1979 permit was not being realized. The pump operation schedule under the 1979 permit did not specify a "bleed-down" mechanism. As a result, when internal stages exceeded the specified control elevation threshold, both Basin B pumps would be operated at a combined rate of 220,000 gpm until the seasonal water control elevation was again established. This operation did not take full advantage of the nutrient removal capacity of the existing system. 1989 Equestrian Estates Permit Modification In 1989, construction and operation authorization was issued for the Equestrian Estates development located within WCPPUD west of the C-4 canal. Among other things, this modification to SWM Permit No. 50-00548-S included the construction of lakes for use as wet detention ponds and a control structure allowing discharge from Lake No. 5 (as designated in Exhibit 2 of the Staff Report, SFWMD Exhibit 5) to the C-4 Canal. However, this control structure and its associated culvert were never constructed. Peacock Pond Enforcement Proceedings Around 1997, SFWMD was informed that the Peacock Pond pump was not being operated and initially brought enforcement proceedings against Polo, which had become the owner of the property in 1993, to resume pumping into Peacock Pond. At the time, SFWMD was involved in enforcement proceedings against Polo, as owner, for unauthorized dredging and filling in Peacock Pond, and SFWMD made an incorrect assumption that Polo was the operator of the Peacock Pond facility under the 1979 permit. SFWMD subsequently realized that Acme, not Polo, was the permit holder. When Acme attempted to turn the pumps on again, Polo refused to allow Acme to do so without compensation. SFWMD then brought an enforcement action against Acme for not operating Peacock Pond in accordance with its permit. SFWMD and Acme entered into a Consent Order requiring Acme to operate Peacock Pond and the rest of the SWM system as required by the 1979 permit. Acme subsequently brought eminent domain proceedings against Polo to acquire Peacock Pond and obtained a final judgment, but the compensation required under the final judgment was prohibitive. SFWMD and the Village of Wellington then entered into a Joint Cooperation Agreement, which (among other things) required the Village of Wellington to submit an "application to modify the Peacock Pond Permit and Consent Agreement to either eliminate or substantially reduce the size of Peacock Pond [which] must provide reasonable assurances that demonstrate that the water quality treatment, water quantity and environmental benefits associated with the Peacock Pond Permit are maintained through the modified facility or by other equivalent measures." In the meantime, SFWMD ordered Acme to set control structures 115 in the C-4 canal and 117 in the C-6 canal at 14' NGVD as required by the original 1979 permit. When this was done without operation of the Peacock Pond retention area as also contemplated and required by the 1979 Permit, the water levels caused septic tank problems to some residents in WCPPUD, leading SFWMD to issue emergency authorizations to lower the crest-settings of structures 115 and 117 to 12.5' NGVD. At those settings, water levels in WCPPUD stayed between 12' and 13' NGVD, and there have been no septic tank problems in the last two years. Specifically, measured water levels in the C-4 canal north of control structure 115 generally ranged between elevation 12' NGVD and 13' NGVD from November 2001 through October 2003, with occasional variances above or below due to drought or rain periods. Proposed Modification to Eliminate Use of Peacock Pond On May 12, 2000, Acme filed an application to modify its permit. The primary purpose of this modification was to authorize alternate SWM facilities within Basin B (primarily within WCPPUD) to maintain the water quality treatment function that was assumed would be realized by Peacock Pond in the WCPPUD permit issued in 1979. Additional components of the permit modification are: installation of a 7.8 acre flow through littoral zone within the C-2 Canal for additional cleansing of Acme Basin B water; modification of the pump operation schedule for Basin B; revision of surface water management design requirements for future development within Country Place to include additional lake acreage and littoral zones; elimination of a previously permitted (but not constructed) control structure allowing discharge from Lake No. 5 to the C- 4 Canal so that water from Lake 5 continues to drain through established canals and lakes into the C-4 Canal; modification of existing flashboard riser water control structures 115 and 117 within the C-4 and C-6 Canals to crest elevations of 12’ and 13’ NGVD, respectively, so that water will be detained upstream but water from both the eastern and western ends of the Wellington WCPPUD drain toward and into the C-4 canal during low flow; and an analysis of nutrient (and phosphorus) loading, removal and export from the Country Place system During the application process, Acme submitted detailed water quality calculations analyzing and comparing the 1979 permit, based on the land uses at that time and the anticipated phosphorous loading that would be discharged from the system, and the proposed modification with current land uses and phosphorous loading now anticipated. To support its modification application, Acme recalculated the water quality treatment currently provided by existing lakes--many of which were not planned in 1979--and other water quality treatment features in WCPPUD. Acme's calculations assumed that all land owners of undeveloped tracts in Basin B, including land owners in WCPPUD, wishing to develop their properties in the future will have to provide for adequate water quality treatment or other acceptable alternatives, as required by SFWMD regulations in place at the time the future permit applications are filed. In order to meet those requirements, future developers can either create lakes on their properties, treat their water off-site on properties such as Peacock Pond, or use other equivalent alternatives. In conformance with current SFWMD criteria, Acme’s application only considered and counted as water quality treatment features water bodies with an average width of at least 100' and a size of at least 0.5 acres. SFWMD spent an enormous amount of time reviewing the data and analyses that were submitted. SFWMD then issued numerous lengthy requests for additional administrative and technical information, requiring Acme among other things to provide water level information and perform management calculations. Acme provided necessary calculations to demonstrate that flood levels within WCPPUD would not be affected by the elimination of Peacock Pond as a water quality feature. Acme's calculations demonstrated that the water quality treatment functions currently provided by existing lakes meeting SFWMD's dimensional criteria and by on-site swales, together with the 7.8-acre off-site littoral shelf to be constructed in canal C-2, would be sufficient to replace the water quality treatment functions assumed to be provided by Peacock Pond under the 1979 permit. SFWMD issued a Staff Report on April 29, 2003, recommending approval of the application to modify the SWM permit. SFWMD found that Acme had provided reasonable assurances by Acme that the applicable permit criteria would be met. On May 15, 2003, the SFWMD Governing Board approved the Staff Report to issue a modification to SWM Permit No. 50-00548- S, Application No. 000512-12. Control Elevations and Pump Operation Schedules The proposed permit modification states that there will be a change in the permitted water control elevations and pump operation schedule within Basin B. However, as set out in Finding 17, supra, in actual practice, water elevations throughout Basin B have been maintained at the levels permitted for WCPPUD under the 1979 permit for at least the last ten years, which include the time period after the Peacock Pond pumped retention area stopped being operated as required under the 1979 permit. The proposed modifications essentially would continue the historical operation of the Acme Basin B system during this time period. In essence, the changes in Basin B outside WCPPUD will simply conform the permit conditions to actual conditions for at least the last ten years. For that reason, SFWMD and Acme has referred to modification as being only "on paper." As reflected in Finding 23(e), supra, water control structures 115 and 117 would be modified in association with this permit modification so that structure 115 (located in the C-4 canal adjacent to Peacock Pond) will have a weir crest elevation of 12' NGVD and structure 117 (located adjacent to the C-6 canal) will have a weir crest elevation of 13' NGVD. As a result, when the water level in WCPPUD exceeds 12' NGVD, it would begin to "bleed down" out of structure 115 in the C-4 canal. If the water level in WCPPUD continued to rise and reached 13' NGVD, it would begin to "bleed down" out of the 117 structure in the C-6 canal as well. Under the proposed permit modification, the pump operation schedule would be revised so that no pumping would occur until Basin B stages reached 13' NGVD. Then, the pump rate will average 30,000 gpm, which equates to a "bleed down" discharge of 20 percent of the one-inch detention above 12' NGVD per day. When the stage has been brought down to 12' NGVD, all pumping would cease. During significant storm events, when the internal stages exceed 13' NGVD, the previously permitted peak discharge rate of 220,000 gpm will be maintained. If the pumps are operated as proposed in this modification, the system will be able to take full advantage of its nutrient removal capacity. At the same time, water levels will be maintained within the ranges of historical operation over at least the last ten years. The only difference is that, except for major storm events, water levels will be allowed to "bleed down" at a slower rate. Notwithstanding these facts, Petitioners believe that control elevations in WCPPUD have always been higher than in Basin B, and are concerned that the proposed "on paper" modification is in the nature of a "smoke and mirrors" trick. Petitioners are concerned the proposed modifications will cause additional water to be detained in WCPPUD to the detriment of the equine industry there. But the evidence indicated that the their concerns are not well-taken. Under the proposed modification, there will be one inch of detention over the entire Basin B water management system between the elevations of 12' NGVD and 13' NGVD. This is the same range of elevations established for WCPPUD in the 1979 SWM permit. The calculated detention volume accounts for the volume of water which is physically accommodated in the system between 12' NGVD and 13' NGVD. There is no additional detention created in the WCPPUD system through the proposed changes. The proposed Basin B pump schedule will result in the same range of water table fluctuation as required in the 1979 SWM permit. As Petitioners' witness, Mr. Straub, testified, the system has worked well as operated for the last three years. No significant changes are to be expected as a result of the proposed pump operation schedule changes designed to achieve greater water quality treatment benefits. In combination, the modification of the pump operation schedule for Basin B and the revisions to the WCPPUD system are expected to result in an improvement in flood control with lower flood stages within WCPPUD through a more efficient water management system. Acme has demonstrated that the proposed modifications will not result in a change in actual water control elevations on Petitioners' properties; will not cause water to back up and cause flooding or septic tank problems within WCPPUD; and will comply with Florida Administrative Code Rule 40E-4.301(1)(a), (b), and (c.) The undisputed expert testimony was that Acme gave reasonable assurances that the proposed permit modification will not "lower existing water table elevations." (Emphasis added.) Fla. Admin. Code R. 40E-41.363(4). Equivalent Water Quality Treatment Provided Acme provided calculations comparing the treatment which was assumed to take place within the originally permitted surface water management system of WCPPUD (which included Peacock Pond), the treatment which is currently being provided by the existing system, and the treatment that will be provided under various assumed future scenarios. Acme demonstrated that there will be an equivalent amount of water quality treatment even though the use of Peacock Pond as a water quality retention area is being eliminated. Petitioner did not provide any contrary evidence to show that the removal of Peacock Pond reduced water quality treatment in the system. As a result, reasonable assurances were given that there will be no adverse effect on the quality of receiving waters as a result of this proposed modification. Additional Wet Detention Areas Now Exist Although the 1979 permit required only 12 acres of wet retention ponds, analysis of aerial photographs and existing permits issued after 1979 indicates that 54.4 acres of wet detention lakes meeting current regulatory criteria now exist in WCPPUD. Another 33 acres of existing wet retention areas (including canals) are present but do not meet the minimum width criteria required for wet detention ponds. Approximately another 4 acres meet the dimensional requirements but are not legally encumbered for use by Acme for water quality purposes. For example, Lakes 6 and 8 meet the dimensional criteria but are not platted as water management areas or encumbered by suitable drainage easement. A similar situation exists with Lake 9, which has been assumed to provide wet detention treatment over only 15.41 acres since the northern 2.25 acres of the 17.66-acre lake are outside the platted water management area's footprint. If all lakes, ponds, and canals within WCPPUD were counted for water quality purposes, Acme calculated that there would be enough capacity to treat approximately one inch of runoff from WCPPUD. Not counting the water bodies not meeting dimensional requirements or not legally encumbered, but assuming that future development within WCPPUD will have 13% water bodies qualifying for use as wet detention areas under current criteria, Acme calculated that there would be capacity to treat one inch runoff from current and future development within WCPPUD. (Instead of 13 percent qualifying wet detention areas, alternative equivalent water quality treatment also could be used to meet applicable water quality treatment criteria.) Planted Filter Marsh Located in C-2 Canal Provides Additional Water Quality Treatment Phosphorus loading can be described as the pounds of phosphorus which are being discharged to a water body through storm water runoff. In WCPPUD today, phosphorous loading is higher than originally anticipated and calculated when the 1979 Permit was issued due to differences in the way the land has been developed over the last 20 years. The main difference is more equestrian activity and its higher phosphorus loading than anticipated in 1979. Acme submitted detailed phosphorus loading information which is included in Exhibits 7A through 7E to the Staff Report (SFWMD Exhibit 5), comparing what the original permit anticipated to what is happening today, and what would happen with the modified system. The detailed information is summarized on Exhibit 8 to the Staff Report. To address phosphorus loading, the proposed project includes construction of a 7.8-acre filter marsh within a portion of the Acme C-2 Canal right-of-way located within Basin B about a half mile west of WCPPUD. The project will extend from the intersection of the C-2 and C-23A canals southwards approximately 6,800'. The filter marsh will treat water flowing south through the C-2 canal prior to reaching the Acme pump stations discharging into the Refuge. The existing Acme C-2 canal will be expanded to a width of approximately 80' to 130' and will incorporate a meandering 40' to 60' wide constructed and planted littoral shelf at elevation 10.0' NGVD. Adjacent to the proposed littoral zone, a 25' wide section of the canal will be excavated to an elevation of approximately 6.0' NGVD. This deeper section is proposed to prevent any reduction in hydraulic capacity of the existing C-2 Canal. The 7.8-acre area will be planted with native wetland vegetation on three centers. It is anticipated that the planted vegetation will meet or exceed the eighty percent coverage requirement within two years; however, additional plants will be installed if the area fails to meet such expectations. Monitoring will occur on a monthly basis until the filter marsh achieves a 50 percent areal coverage of desirable planted and recruited wetland vegetation. Upon attainment of the 50 percent coverage criterion, the monitoring frequency will be reduced to four times per year for a period of three years. Subsequent maintenance and monitoring events will occur semi- annually. Should exotic infestation occur, herbicide and/or hand clearing will be utilized to bring the filter marsh into compliance with desired plant specie densities. Special Condition No. 12 of the Staff Report (SFWMD Exhibit 5) requires that the Acme adhere to the filter marsh maintenance plan. The proposed littoral zone construction is expected to be initiated within six months of permit issuance and completed within six months of commencement. The pollutant loading/removal spreadsheets provide an estimate that the marsh will result in the annual removal of 33 pounds of total phosphorus. At the same time, the proposed filter marsh will add the equivalent of one-half inch of water quality treatment benefits within the entirety of Basin B. As a result, with the proposed filter marsh, Acme gave reasonable assurances that the proposed permit modification would provide "an additional fifty (50) percent retention/detention water quality treatment addition to the water quality treatment volumes required in section 5.2.1. of the Basis of Review [for projects within a Water Protection Area or Area Basin]." Fla. Admin. Code R. 40E-41.363(5). Approximately half of the proposed filter marsh will extend north of the east/west C-24 Canal, and half will extend south of it. The northern half will treat water from an area of relatively intense equestrian use just west of WCPPUD; the southern half will continue to treat water flowing through the northern half of the filter marsh. However, the southern half also will treat some water from the C-4 and C-6 canals in WCPPUD, which flows south to the C-24 and then west to the C-2. Exhibit 9B of the Staff Report (SFWMD Exhibit 5) delineates the assumed contributing area of 960 acres. BMPs Provide Improvements in Water Quality Best Management practices (BMPs) are water quality treatment operational practices to prevent pollutants from ultimately entering the receiving water body. BMPs are also often referred to as source controls. Examples of BMPs include street-sweeping and cleaning out storm gutters to control pollutants at their source. BMPs are commonly considered in ERP permitting. The Village of Wellington has mandated a BMP program in Basin B, including: an ordinance dealing with phosphorus and water quality improvement; an ordinance regulating the application of fertilizer, requiring no more than two percent phosphorus content; and an equestrian BMP requiring equestrian residuals, commonly known as manure, be collected and contained in concrete covered bins. Historically, horse manure was stockpiled in the open and exposed to rainfall. Stormwater runoff from the stockpiled manure often flowed directly into the Acme canals. Stormwater runoff from equestrian residuals has been a major contributing factor to the amount of phosphorus being discharged to the Everglades from Basin B. The Village of Wellington also is implementing BMPs for its own canal maintenance and for cleaning phosphorous-laden sediments from its canals. The calculations provided to SFWMD by Acme concerning BMPs do not assume an initial 100-percent compliance. Initially, a 20-percent compliance was assumed because the ordinances are fairly new. These BMPs were not in place when the 1979 permit was issued. Under the current application, it is expected that the BMPs throughout Basin B will significantly reduce the amount of phosphorus ultimately discharged through the two Acme pump stations to the Refuge. Although there is an increase in phosphorus loading from that anticipated in 1979, the BMPs, filter marsh, amendment to the pump operation schedule, comprehensive water quality monitoring plan, and other items in the modification offset the increase. (The modifications in the proposed permit are not designed to address the overall Basin B phosphorus problems.) Comprehensive Water Quality Monitoring Program SFWMD and the Village of Wellington have implemented a comprehensive water quality monitoring program with Basin B. This program includes existing and proposed sampling points within WCPPUD shown on Exhibits 2 and 9B of the Staff Report (SFWMD Exhibit 5). This permit modification requires that Acme continue this monitoring program as specified in Special Condition No. 11 to the Staff Report. Elimination of Existing Control Structure As stated in Finding 19, supra, a 1989 modification to the 1979 authorized construction and operation of a control structure allowing discharge from Lake No. 5 (as designated in Exhibit 2 of the Staff Report, SFWMD Exhibit 5) to the C-4 Canal, which was never built. Instead, as shown on Exhibit 2 of the Staff Report, the existing SWM system for Equestrian Estates discharges to the C-4 Canal well to the north of the authorized control structure via a 100' wide canal. The proposed permit modification will eliminate the authorization for the Equestrian Estates control structure which was never constructed. This revision is necessary to ensure that discharge from the development will continue to occur upstream of Structure 115, as it does today, and that the on- site detention facilities within Equestrian Estates will function as modeled in the water quality analysis. Polo's Pending Application for Peacock Pond Polo has pending a separate application to SFWMD (Application No. 020215-10) requesting authorization for development of Peacock Pond as a polo field. Polo’s proposed water quality feature for its Peacock Pond polo fields development includes a lake on the north end of Peacock Pond. It appears that the lake would utilize lakes/canals 12 and 13, which are currently located at the north end and northeast corner of Peacock Pond, essentially enlarging those lakes/canals to the south and west into Peacock Pond. Polo's application is currently incomplete and fails to address a number of significant water resource issues. SFWMD mailed an initial Request for Additional Information (RAI) to Polo on March 15, 2002. Responses were due within thirty days. As of the date of the final hearing in this case, no response to the initial RAI had been submitted. Notwithstanding its pending application, Polo professes to believe that its undeveloped properties in WCPPUD are "vested," so that Polo should not be required to provide water quality treatment when developing its properties in the future. But the 1979 permit stated that it only permitted construction in certain parts of WCPPUD and that individual permit modifications would be required for the future development of additional phases. (SFWMD Exhibit 2 at p. 1; special conditions.) All "grand fathered" development already has taken place. No evidence or convincing legal argument was presented by Petitioners for the proposition that land owners seeking to develop their properties in Wellington WCPPUD now or in the future should be "vested" and thus subject to different water management regulations than other land owners seeking to develop their properties in Acme Basin B. SFWMD's Proposed Corrections to Staff Report At the Final Hearing, SFWMD suggested that two corrections be made to the Staff Report. The first would add "Section No. 20" on page 1 of the Staff Report (SFWMD Exhibit 5) to clarify the property is actually located in sections 20 and This type of change would be made administratively even without this proceeding. The other correction is proposed on page 4 of the Staff Report (SFWMD Exhibit 5), pertaining to the description of the water elevation within Basin B and Country Place, as follows: The water elevation within Basin B and Country Place was originally permitted with a wet season control elevation of 12.0' and a dry season control of 13.0' NGVD. The minimum road and finish floor elevations were established at elevation 16.0' and 17.0 NGVD, respectively. The water elevation within Basin B was permitted in 1978 with a schedule stage of 13' NGVD in the wet season and 13' NGVD in the dry season; however, the system has historically been operated with a control elevation of 12' NGVD in the wet season and 13' in the dry season. WCPPUD was originally permitted with a wet season control elevation of 12' NGVD and a dry season control elevation of 13' NGVD. The Country Place pump station discharging into Peacock Pond was to begin operation when water elevations reached 13' NGVD and discontinue when the system was drawn down to elevation 12' NGVD. The operational elevations authorized in this staff report are consistent with those authorized in 1979 for Country Place. The 1978 permit also established a minimum road grade elevation of 16' NGVD and a finished floor elevation of 17' NGVD for Basin B. The 1979 permit for Country Place established the same minimum road grade and finished floor elevations. This correction accurately describes the 1978 permit for Basin B; it is not a substantive change. These and other possible changes to the Staff Report were drafted shortly before the final hearing in the form of an "Addendum to Staff Report." Petitioners contended that this denied them due process. However, this Addendum (which was not introduced into evidence) was presented to propose corrections to minor errors in the original Staff Report and to suggest appropriate ways to address issues raised by Petitioners during prehearing procedures in this case in order to help clarify the intention of the Staff Report for Petitioners' benefit. SFWMD offered to withdraw the latter Addendum proposals if Petitioners so wished; Petitioners declined to request that these proposals be withdrawn, but none are considered to be necessary. Other Contentions Raised By Petitioners Alleged Elimination of Petitioners' Water Treatment Facilities Petitioners contended in their Second Amended Petition that the modification will cause "33 acres of previously permitted and constructed water management facilities to no longer be considered toward meeting water quality treatment." But the 33 acres referenced by the Petitioners were never counted for water quality treatment in the previous permits. Additionally, as discussed above, they do not meet the minimal dimensional criteria or have not been encumbered for water quality purposes. See Finding 41, supra. The only surface water management facility which has a change in its permitted status for water quality treatment is Peacock Pond. Future Development is Not Precluded from Proposing Alternative Water Quality Treatment Petitioners expressed a concern that the proposed permit modification would bind future development to the Acme's design assumptions--specifically, the assumption that, in order to meet SFWMD's criteria for new development, future development projects would include 13 percent lakes. This concern seems to spring primarily from the following statement on page 3 of 21 of the Staff Report (SFWMD Exhibit 5): "This permit modification requires that applicants adhere to the stated surface water management system assumptions for all future development." Reading the Staff Report as a whole, it was reasonably clear that Acme's assumption was made only for purposes of its permit modification application and would not bind future developers in WCPPUD. Rather, future applicants may propose any alternative methods that comply with Chapter 40E-4, Florida Administrative Code, and the BOR to demonstrate compliance with water quality requirements. For example, the Staff Report states on page 13: Future Country Place applicants are not precluded from proposing alternative means of treatment which can be demonstrated to provide an equivalent level of treatment. Further, the assumptions do not preclude the SFWMD from requiring additional treatment measures as necessary from an applicant to provide reasonable assurance that future projects will not cause or contribute to existing water quality problems in Basin B. The testimony of SFWMD witnesses confirmed this reading of the Staff Report. There is no need to further modify the Staff Report to allay Petitioners' expressed concern. Canals/Lakes 12 and/or 13 Not Affected Petitioners' Second Amended Petition questioned whether Acme's canals/lakes 12 and 13, which border Peacock Pond on the north and in the northeast corner, are properly located within Acme's easements. But Acme's application proposes no modifications to those canals/lakes. Not only are canals/lakes 12 and 13 not the subject of this permit modification, Petitioners introduced no competent, substantial evidence demonstrating improper placement of those conveyance features. In an abundance of caution, SFWMD suggested adding the following Special Condition Number 14 to address this issue: If a final determination is made by a court of competent jurisdiction that Acme does not own, have an easement or otherwise have the right to utilize the area where canal/lake Number 12 and/or canal/lake Number 13 is located, then within 30 days of such determination, Acme shall file an application with the SFWMD to move the canal/lake Number 12 and or canal/lake Number 13 to an area which is determined to be owned by Acme or over which Acme has an easement, or modify the surface water management system to discontinue use of canal/lake Number 12 and or canal/lake Number 13. Inclusion of this language would confirm that, if a court makes a final determination that Acme does not have the right or access to utilize Canals/Lakes Number 12 and/or 13, Acme would be required to modify the permit. While adding the suggested language to the Staff Report is appropriate, it is not necessary; reasonable assurances have been provided without any additional language that the permit criteria have been satisfied. If canal/lakes 12 and 13 should ever become unusable, thus preventing a discharge of the eastern half of WCPPUD into the C-4 canal, the drainage system could be split so that the western half discharges into the C-4 canal and the eastern half into the C-6 canal. In that case, a minor modification would be required to lower the weir at structure 117 to 12’ NGVD and the permit is modified. Mr. Higgins performed calculations to demonstrate that such a minor modification would be permittable under applicable criteria.4 Wetlands in Pod F Not Adversely Affected The Staff Report includes reference to wetlands located in the southeast corner of Pod F of WCPPUD. (Pod F itself is in the southeast corner of Section 20.) Petitioners seemed to take issue with the Staff Report's description of these wetlands. They also disputed whether Acme provided reasonable assurance that these wetlands would not be adversely affected by the proposed modifications. Specifically, Polo expressed concern that the proposed modifications would undermine a plan it has to restore wetlands in Pod F for use as mitigation for an after-the-fact permit to be issued to resolve a SFWMD cease and desist order imposed on Polo for activities in an adjacent polo field, and perhaps also as mitigation for wetland impacts by Polo and other future developers in the area. In taking these positions, Petitioners criticized SFWMD for not presenting expert testimony from a biologist. The Staff Report states that "the 3.74-acres of cypress wetland contained within Pod F" are the only other wetlands in WCPPUD besides Peacock Pond. These wetlands were described as being "in poor biological condition." Petitioners argued that the testimony of their expert supported a finding that the wetlands in Pod F actually are approximately 25 acres in size. However, her actual testimony was that her proposed wetlands restoration project was 25 acres in size. Part of her proposed restoration project includes the "vertical relocation" of higher ground now infested with melaleuca and other nuisance and exotic species. In addition, she admitted that she had not delineated wetlands in Pod F using the methodology adopted for that purpose by the State of Florida; instead, she used methodology adopted by the United States Army Corps of Engineers was used. Not only are the two methodologies different, the Army Corps methodology includes wetlands not included under the State of Florida methodology. Finally, Petitioners' expert admitted that less than 4 acres of the 25 acres included in her project area consisted of "cypress heads." Taken as a whole, the evidence did not demonstrate a need to revise the Staff Report's description of the size of the wetlands in Pod F. As for the Staff Report's description of the Pod F wetlands' "poor biological condition," this is consistent with the testimony of Petitioners' expert. She testified that the wetlands' hydrology was deficient, especially on the northern half of the restoration project area, and that the tract is "highly infested with exotic vegetation," leading to the need for restoration. The hydrology is better on the southern half of the restoration project area, where the cypress trees are healthy; but the cypress trees on the northern half of the tract are under stress, with lots of old world climbing vines on them and other infestation of exotic vegetation, including melaleuca. On site visits, the expert saw "wading birds, snakes, signs of raccoon [and n]umerous bird species." No endangered or threatened species were said to be using the tract at this time. One purpose of the restoration project would be to create better wildlife habitat. Petitioners' expert testified that if water levels were lowered in the proposed restoration project area, there could be an adverse impact on existing and planned wetlands. However, Petitioners' expert did not have evidence or information indicating historic or current water levels. Petitioners' expert also did not know whether the permit modification will lower or have any affect on the water levels in that area. Petitioners introduced neither competent evidence of current groundwater levels under the proposed wetlands mitigation project, nor competent evidence as to how the permit modification might change those groundwater levels. Acme and SFWMD presented evidence that the water levels in the C-4 and C-23 canals, directly adjacent to Pod F, will not be changed significantly as a result of the permit modification; that the proposed permit modification will have no effect on the groundwater levels in this wetland area; and that, as a result, no wetland impacts will occur from the permit modifications. Petitioners did not rebut the Respondents' evidence. As a result, Acme has demonstrated that not only groundwater and surface water flows and levels but also the value of wetland functions in Pod F will not be adversely impacted, as required by Rule 40E-4.301(d) and (g), Florida Administrative Code. The evidence was that SFWMD biologists visited the Pod F wetlands and prepared a report which formed the basis of statements in the Staff Report about the absence of wetland impacts. Given the finding that groundwater levels in the Pod F will not change, the testimony of expert biologists was not necessary. Assumed Commercial Acreage Through the testimony of Michael Nelson, Petitioners questioned a purported statement in the Staff Report that there are 24.4 acres of commercial acreage in WCPPUD. According to Mr. Nelson, there actually are only five acres of commercially zoned property in the PUD. Mr. Nelson stated that this, along with other alleged errors, undermine his confidence in SFWMD's entire evaluation of the proposed permit modification. In fact, the Staff Report, at page 8, states that "the original permit application (in 1979) included only two land uses: 935.6 acres of single family use . . . and 24.4 acres of commercial area." There was no statement that 24.4 acres is zoned commercial today. Past Violations Petitioners also assert that the proposed permit modification should be denied because Acme has not strictly abided by applicable permits. But Acme's most significant past violation was the failure to operate Peacock Pond as required by the 1979 Permit. As reflected in Findings 21 and 23, supra, the primary purpose of this proposed modification is to resolve the enforcement proceedings that arose out of the Peacock Pond violation. Acme also has been one of thousands of SFWMD permit holders who have not certified construction of their systems in conformance with the applicable permits, which is required to transfer the permit into operational status. For many years, SFWMD did not monitor permits for certification and did not enforce failure to certify permits. When monitoring and enforcement was initiated in 1995, it was found that over 12,000 permits were in violation for failure to submit the required certifications. SFWMD prioritized the missing certifications and began methodical follow-up. When SFWMD raised the issue with Acme, Acme responded, and the outstanding violations are being resolved. SFWMD saw no need to initiate formal enforcement proceedings and has been treating the outstanding violations as a "non-compliance" issue since it is a paperwork problem, not an environmental resource problem. At this time, the modifications to structures 115 and 117 in accordance with the several emergency authorizations to address septic tank problems have been certified. However, as indicated, the 1979 Permit itself cannot be certified so long as the Peacock Pond pumped retention area is not in place and operational. It is found that Acme has sufficient financial, legal, and administrative capabilities to ensure that water management modifications will be undertaken in accordance with the terms and conditions of the modified permit. (Since Acme is now a dependent special district of the Village of Wellington, the Village of Wellington actually will be responsible for installation, operation, and maintenance of these structures.) Notwithstanding the past violations, reasonable assurances have been given that Acme will comply with the terms of its proposed permit modification. Propriety of Petitioners’ Purpose Acme has raised the issue whether Petitioners participated in this proceeding for an "improper purpose," i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of licensing or securing the approval of an activity." § 120.595(1)(e)1, Fla. Stat. (2003). But it is found that, under the totality of circumstances, Petitioners' participation in this proceeding was not for an improper purpose, as defined by statute. Petitioners' participation in this proceeding has indeed needlessly increased Acme's cost of obtaining SFWMD's permit approval; but the evidence did not prove that this was Petitioners' primary purpose. It also is clear that Petitioners attempted to delay this proceeding through repeated requests for continuances (and other procedural and evidentiary objections) and that, while they usually based their requests for continuances in part on the alleged need for more time for more discovery, they failed to pick up voluminous copies of requested discovery documents and complained about how much money they had already spent on discovery. Nonetheless, it is found that Acme did not prove that Petitioners' primary purpose for participating in this proceeding was to delay the proceeding. It seems reasonably clear that, had Petitioners retained a competent expert engineer to evaluate its case, the expert probably would have advised Petitioners that they would not be able to successfully challenge SFWMD's proposed agency action. For that and other reasons, a reasonable person would not have raised and pursued some of the issues raised by Petitioners in this proceeding. But it cannot be found that all of the issues they raised were frivolous or that their participation in this proceeding was for an improper purpose.
The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.
Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.
Findings Of Fact The petitioner is a private landowner of a tract of land adjacent to the Suwannee River in Dixie County, Florida. The Respondent, State of Florida, Department of Environmental Regulation, is an agency of the State of Florida charged with carrying out the mandates of Chapter 403, Florida Statutes, and the rules contained in the Florida Administrative Code promulgated thereunder. The Petitioner's proposed project entails the construction of a twelve- foot wide filled road across approximately 270 feet of swampy area in which the dominant plant species is bald cypress (taxodium distichum), a species listed in Rule 17-4.02(17), Florida Administrative Code. The property to be so developed by the petitioner lies within the landward extent of the Suwannee River in Dixie County. The Suwannee River, in this project area, constitutes waters of the state over which the Department has dredge and fill permitting jurisdiction pursuant to Rule 17-4.28(a), Florida Administrative Code. The project areas within "outstanding Florida waters" as defined in Rule 17-3.04(1)(3)g, Florida Administrative Code. The "upland berm" or river terrace on the property immediately adjacent to the navigable portion of the river is caused by the natural alluvial deposition of the river and the landward extent of the state waters here involved crosses the property in approximately the center of the parcel. The proposed filing for the road crossing the swamp would result in the permanent elimination of at least 3,240 square feet of area within the landward extent of the Suwannee River. Specifically, the project would consist of a road some 12 feet wide at the bottom and 8 feet wide at the top, extending approximately 270 feet across the swampy area in question from the portion of the property which fronts on a public road, to the river terrace or "berm" area along the navigable portion of the Suwannee River. The road will be constructed with approximately 450 cubic yards of clean fill material with culverts 12 feet in length and 3 feet in diameter placed under the road at 25 foot intervals. The parties have stipulated that the Department has jurisdiction pursuant to Chapter 403, Florida Statutes, and Public Law 92-500, to require a permit and water quality certification or the construction of a stationary installation within the waters of the state which this project has been stipulated to be. The area to be filled is primarily vegetated by bald cypress, ash, blackgum, planer trees and other swamp species falling within the definitional portion of the above rule. The swamp contributes to the maintenance of water quality in the river itself by the filtering of sediment and particulates, assimilating and transforming nutrients and other pollutants through the uptake action of the plant species growing therein. The proposed project would destroy by removal, and by the filling, a substantial number of these species on the site which perform this function. The swamp area also serves as a habitat, food source and breeding ground for various forms of fish and wildlife including a species of state concern, the yellow-crowned night heron, which has been observed on this site and which requires such habitat for breeding and for its food source (see the testimony of Kautz). The area in question provides flood protection by storing flood waters and releasing them in a gradual fashion to the river system, especially during dry periods when the river level is lower than that of the swamp which serves to augment stream flow in such periods. As established by witness Kautz, as well as witnesses Rector and Tyler, the filling proposed by the Petitioner would cause degradation of local water quality within the immediate area where the fill would be placed and, the attendant construction activity adjacent to either side of the filled area would disturb trees, animals and other local biota. The period during and immediately after the construction on the site would be characterized by excessive turbidity and resultant degradation of the water quality within the area and downstream of it. The long-term impact of the project would include continued turbidity adjacent to and downstream from the filled road due to sloughing off of the sides of the road caused by an excessively steep slope and to the necessary maintenance operations required to re-establish the road after washouts caused by each rain or rainy period. An additional long-term detrimental effect will be excessive nutrient enrichment expected in the area due to the removal of the filtrative functions caused by removal of the trees and other plant life across the entire width of the swamp and the resultant inability of the adjacent areas to take up the nutrient load formerly assimilated by the plant life on the project area. The project will thus permanently eradicate the subject area's filtrative and assimilative capacity for nutrients, heavy metals and other pollutants. The effect of this project, as well as the cumulative effect of many such already existent fill roads in this vicinity along the Suwannee River, and the effect of proliferation of such filling, will cause significant degradation of local water quality in violation of state standards. The effect of even this single filled road across the subject swamp is especially severe in terms of its "damming" effect (even with culverts). The resultant retention of water standing in the swamp for excessive periods of time will grossly alter the "hydro period" of the area or the length of time the area is alternately inundated with floodwaters or drained of them. This will cause a severe detrimental effect on various forms of plant and animal life and biological processes necessary to maintenance of adequate water quality in the swamp and in its discharge to the river itself. The excessive retention of floodwaters caused by this damming effect will ultimately result in the death of many of the tree species necessary for the uptake of nutrients and other pollutants which can only tolerate the naturally intermittent and brief flood periods. This permit is not necessary in order for the Petitioner to have access to his property as his parcel fronts on a public access road. The purpose of the proposed road is merely to provide access to the river terrace or "upland berm" area on the portion of the property immediately adjacent to the navigable waters of the Suwannee River. The Department advocated through its various witnesses that a viable and acceptable alternative would be the construction of a walkway or a bridge on pilings across the jurisdictional area in question connecting the two upland portions of Petitioner's property. Such a walkway would also require a permit, but the Department took the position that it would not object to the permitting of an elevated wooden walkway or bridge for vehicles. The petitioner, near the close of the hearing, ultimately agreed that construction of such a walkway or bridge would comport with his wishes and intentions for access to the river berm portion of his property and generally indicated that that approach would be acceptable to him. It should also be pointed out that access is readily available to the waterward portion of the property from the navigable waters of the river by boat. The Petitioner did not refute the evidence propounded by the Department's expert witnesses, but testified that he desired the fill-road alternative because he believed it to be somewhat less expensive than construction of an elevated wooden bridge or walkway and that he had been of the belief that the use of treated pilings for such a walkway or bridge would result in chemical pollution of the state waters in question. The expert testimony propounded by the Respondent, however, establishes that any leaching action of the chemical in treated pilings would have a negligible effect on any life forms in the subject state waters at any measurable distance from the pilings. In summary, the petitioner, although he did not stipulate to amend his petition to allow for construction of the bridge as opposed to the fill road, did not disagree with it as a viable solution and indicated willingness to effect establishment of access to the riverfront portion of his property by that alternative should it be permitted.
The Issue Whether proposed Rule Chapter 62-303, Florida Administrative Code, which describes how the Department of Environmental Protection will exercise its authority under Section 403.067, Florida Statutes, to identify and list those surface waters in the state that are impaired for purposes of the state's total maximum daily load (commonly referred to as "TMDL") program, is an "invalid exercise of delegated legislative authority," within the meaning of Chapter 120, Florida Statutes, for the reasons asserted by Petitioners.
Findings Of Fact Based upon the evidence adduced at hearing and the record as a whole, the following findings of fact are made to supplement the factual stipulations contained in the parties' Prehearing Stipulation: State TMDL Legislation Over the last 30 years, surface water quality management in Florida, like in the rest of the United States, has focused on the control of point sources of pollution (primarily domestic and industrial wastewater) through the issuance, to point source dischargers, of National Pollutant Discharge Elimination System (NPDES) permits, which specify effluent-based standards with which the permit holders must comply. Although "enormously successful in dealing with . . . point sources" of pollution, the NPDES program has not eliminated water quality problems largely because discharges from other sources of pollution (nonpoint sources) have not been as successfully controlled. In the late 1990's, the Department recognized that, to meet Florida's water quality goals, it was going to have to implement a TMDL program for the state. Wanting to make absolutely sure that it had the statutory authority to do so, the Department sought legislation specifically granting it such authority. Jerry Brooks, the deputy director of the Department's Division of Water Resource Management, led the Department's efforts to obtain such legislation. He was assisted by Darryl Joyner, a Department program administrator responsible for overseeing the watershed assessment and groundwater protection sections within the Division of Water Resource Management. Participating in the drafting of the legislation proposed by the Department, along with Mr. Brooks and Mr. Joyner, were representatives of regulated interests. No representatives from the environmental community actively participated in the drafting of the proposed legislation. The Department obtained the TMDL legislation it wanted when the 1999 Florida Legislature enacted Chapter 99-223, Laws of Florida, the effective date of which was May 26, 1999. Section 1 of Chapter 99-223, Laws of Florida, added the following to the definitions set forth in Section 403.031, Florida Statutes, which define "words, phrases or terms" for purposes of "construing [Chapter 403, Florida Statutes], or rules or regulations adopted pursuant [t]hereto": (21) "Total maximum daily load" is defined as the sum of the individual wasteload allocations for point sources[11] and the load allocations for nonpoint sources and natural background. Prior to determining individual wasteload allocations and load allocations, the maximum amount of a pollutant that a water body or water segment can assimilate from all sources without exceeding water quality standards must first be calculated. Section 4 of Chapter 99-223, Laws of Florida, added language to Subsection (1) of Section 403.805, Florida Statutes, providing that the Secretary of the Department, not the Environmental Regulation Commission, "shall have responsibility for final agency action regarding total maximum daily load calculations and allocations developed pursuant to s. 403.067(6)," Florida Statutes. The centerpiece of Chapter 99-223, Laws of Florida, was Section 3 of the enactment, which created Section 403.067, Florida Statutes, dealing with the "[e]stablishment and implementation of total maximum daily loads." Section 403.067, Florida Statutes, was amended in 2000 (by Chapter 2000-130, Laws of Florida) and again in 2001 (by Chapter 2001-74, Laws of Florida). It now reads, in its entirety, as follows: LEGISLATIVE FINDINGS AND INTENT.-- In furtherance of public policy established in s. 403.021, the Legislature declares that the waters of the state are among its most basic resources and that the development of a total maximum daily load program for state waters as required by s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq. will promote improvements in water quality throughout the state through the coordinated control of point and nonpoint sources of pollution.[12] The Legislature finds that, while point and nonpoint sources of pollution have been managed through numerous programs, better coordination among these efforts and additional management measures may be needed in order to achieve the restoration of impaired water bodies. The scientifically based total maximum daily load program is necessary to fairly and equitably allocate pollution loads to both nonpoint and point sources. Implementation of the allocation shall include consideration of a cost- effective approach coordinated between contributing point and nonpoint sources of pollution for impaired water bodies or water body segments and may include the opportunity to implement the allocation through nonregulatory and incentive-based programs. The Legislature further declares that the Department of Environmental Protection shall be the lead agency in administering this program and shall coordinate with local governments, water management districts, the Department of Agriculture and Consumer Services, local soil and water conservation districts, environmental groups, regulated interests, other appropriate state agencies, and affected pollution sources in developing and executing the total maximum daily load program. LIST OF SURFACE WATERS OR SEGMENTS.-- In accordance with s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq., the department must submit periodically to the United States Environmental Protection Agency a list of surface waters or segments for which total maximum daily load assessments will be conducted. The assessments shall evaluate the water quality conditions of the listed waters and, if such waters are determined not to meet water quality standards, total maximum daily loads shall be established, subject to the provisions of subsection (4). The department shall establish a priority ranking and schedule for analyzing such waters. The list, priority ranking, and schedule cannot be used in the administration or implementation of any regulatory program. However, this paragraph does not prohibit any agency from employing the data or other information used to establish the list, priority ranking, or schedule in administering any program. The list, priority ranking, and schedule prepared under this subsection shall be made available for public comment, but shall not be subject to challenge under chapter 120. The provisions of this subsection are applicable to all lists prepared by the department and submitted to the United States Environmental Protection Agency pursuant to s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq., including those submitted prior to the effective date of this act, except as provided in subsection (4). If the department proposes to implement total maximum daily load calculations or allocations established prior to the effective date of this act, the department shall adopt those calculations and allocations by rule by the secretary pursuant to ss. 120.536(1) and 120.54 and paragraph (6)(d). ASSESSMENT.-- Based on the priority ranking and schedule for a particular listed water body or water body segment, the department shall conduct a total maximum daily load assessment of the basin in which the water body or water body segment is located using the methodology developed pursuant to paragraph (b). In conducting this assessment, the department shall coordinate with the local water management district, the Department of Agriculture and Consumer Services, other appropriate state agencies, soil and water conservation districts, environmental groups, regulated interests, and other interested parties. The department shall adopt by rule a methodology for determining those waters which are impaired. The rule shall provide for consideration as to whether water quality standards codified in chapter 62- 302, Florida Administrative Code, are being exceeded, based on objective and credible data, studies and reports, including surface water improvement and management plans approved by water management districts under s. 373.456 and pollutant load reduction goals developed according to department rule. Such rule also shall set forth: Water quality sample collection and analysis requirements, accounting for ambient background conditions, seasonal and other natural variations; Approved methodologies; Quality assurance and quality control protocols; Data modeling; and Other appropriate water quality assessment measures. If the department has adopted a rule establishing a numerical criterion for a particular pollutant, a narrative or biological criterion may not be the basis for determining an impairment in connection with that pollutant unless the department identifies specific factors as to why the numerical criterion is not adequate to protect water quality. If water quality non-attainment is based on narrative or biological criteria, the specific factors concerning particular pollutants shall be identified prior to a total maximum daily load being developed for those criteria for that surface water or surface water segment. APPROVED LIST.-- If the department determines, based on the total maximum daily load assessment methodology described in subsection (3), that water quality standards are not being achieved and that technology- based effluent limitations[13] and other pollution control programs under local, state, or federal authority, including Everglades restoration activities pursuant to s. 373.4592 and the National Estuary Program, which are designed to restore such waters for the pollutant of concern are not sufficient to result in attainment of applicable surface water quality standards, it shall confirm that determination by issuing a subsequent, updated list of those water bodies or segments for which total maximum daily loads will be calculated. In association with this updated list, the department shall establish priority rankings and schedules by which water bodies or segments will be subjected to total maximum daily load calculations. If a surface water or water segment is to be listed under this subsection, the department must specify the particular pollutants causing the impairment and the concentration of those pollutants causing the impairment relative to the water quality standard. This updated list shall be approved and amended by order of the department subsequent to completion of an assessment of each water body or water body segment, and submitted to the United States Environmental Protection Agency. Each order shall be subject to challenge under ss. 120.569 and 120.57. REMOVAL FROM LIST.-- At any time throughout the total maximum daily load process, surface waters or segments evaluated or listed under this section shall be removed from the lists described in subsection (2) or subsection (4) upon demonstration that water quality criteria are being attained, based on data equivalent to that required by rule under subsection (3). CALCULATION AND ALLOCATION.-- Calculation of total maximum daily load. Prior to developing a total maximum daily load calculation for each water body or water body segment on the list specified in subsection (4), the department shall coordinate with applicable local governments, water management districts, the Department of Agriculture and Consumer Services, other appropriate state agencies, local soil and water conservation districts, environmental groups, regulated interests, and affected pollution sources to determine the information required, accepted methods of data collection and analysis, and quality control/quality assurance requirements. The analysis may include mathematical water quality modeling using approved procedures and methods. The department shall develop total maximum daily load calculations for each water body or water body segment on the list described in subsection (4) according to the priority ranking and schedule unless the impairment of such waters is due solely to activities other than point and nonpoint sources of pollution. For waters determined to be impaired due solely to factors other than point and nonpoint sources of pollution, no total maximum daily load will be required. A total maximum daily load may be required for those waters that are impaired predominantly due to activities other than point and nonpoint sources. The total maximum daily load calculation shall establish the amount of a pollutant that a water body or water body segment may receive from all sources without exceeding water quality standards, and shall account for seasonal variations and include a margin of safety that takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality. The total maximum daily load may be based on a pollutant load reduction goal developed by a water management district, provided that such pollutant load reduction goal is promulgated by the department in accordance with the procedural and substantive requirements of this subsection. Allocation of total maximum daily loads. The total maximum daily loads shall include establishment of reasonable and equitable allocations of the total maximum daily load among point and nonpoint sources that will alone, or in conjunction with other management and restoration activities, provide for the attainment of water quality standards and the restoration of impaired waters. The allocations may establish the maximum amount of the water pollutant from a given source or category of sources that may be discharged or released into the water body or water body segment in combination with other discharges or releases. Allocations may also be made to individual basins and sources or as a whole to all basins and sources or categories of sources of inflow to the water body or water body segments. Allocations shall be designed to attain water quality standards and shall be based on consideration of the following: Existing treatment levels and management practices; Differing impacts pollutant sources may have on water quality; The availability of treatment technologies, management practices, or other pollutant reduction measures; Environmental, economic, and technological feasibility of achieving the allocation; The cost benefit associated with achieving the allocation; Reasonable timeframes for implementation; Potential applicability of any moderating provisions such as variances, exemptions, and mixing zones; and The extent to which nonattainment of water quality standards is caused by pollution sources outside of Florida, discharges that have ceased, or alterations to water bodies prior to the date of this act. Not later than February 1, 2001, the department shall submit a report to the Governor, the President of the Senate, and the Speaker of the House of Representatives containing recommendations, including draft legislation, for any modifications to the process for allocating total maximum daily loads, including the relationship between allocations and the watershed or basin management planning process. Such recommendations shall be developed by the department in cooperation with a technical advisory committee which includes representatives of affected parties, environmental organizations, water management districts, and other appropriate local, state, and federal government agencies. The technical advisory committee shall also include such members as may be designated by the President of the Senate and the Speaker of the House of Representatives. The total maximum daily load calculations and allocations for each water body or water body segment shall be adopted by rule by the secretary pursuant to ss. 120.536(1), 120.54, and 403.805. The rules adopted pursuant to this paragraph shall not be subject to approval by the Environmental Regulation Commission. As part of the rule development process, the department shall hold at least one public workshop in the vicinity of the water body or water body segment for which the total maximum daily load is being developed. Notice of the public workshop shall be published not less than 5 days nor more than 15 days before the public workshop in a newspaper of general circulation in the county or counties containing the water bodies or water body segments for which the total maximum daily load calculation and allocation are being developed. IMPLEMENTATION OF TOTAL MAXIMUM DAILY LOADS.-- The department shall be the lead agency in coordinating the implementation of the total maximum daily loads through water quality protection programs. Application of a total maximum daily load by a water management district shall be consistent with this section and shall not require the issuance of an order or a separate action pursuant to s. 120.536(1) or s. 120.54 for adoption of the calculation and allocation previously established by the department. Such programs may include, but are not limited to: Permitting and other existing regulatory programs; Nonregulatory and incentive-based programs, including best management practices, cost sharing, waste minimization, pollution prevention, and public education; Other water quality management and restoration activities, for example surface water improvement and management plans approved by water management districts under s. 373.456 or watershed or basin management plans developed pursuant to this subsection; Pollutant trading or other equitable economically based agreements; Public works including capital facilities; or Land acquisition. In developing and implementing the total maximum daily load for a water body, the department, or the department in conjunction with a water management district, may develop a watershed or basin management plan that addresses some or all of the watersheds and basins tributary to the water body. These plans will serve to fully integrate the management strategies available to the state for the purpose of implementing the total maximum daily loads and achieving water quality restoration. The watershed or basin management planning process is intended to involve the broadest possible range of interested parties, with the objective of encouraging the greatest amount of cooperation and consensus possible. The department or water management district shall hold at least one public meeting in the vicinity of the watershed or basin to discuss and receive comments during the planning process and shall otherwise encourage public participation to the greatest practical extent. Notice of the public meeting shall be published in a newspaper of general circulation in each county in which the watershed or basin lies not less than 5 days nor more than 15 days before the public meeting. A watershed or basin management plan shall not supplant or otherwise alter any assessment made under s. 403.086(3) and (4), or any calculation or allocation made under s. 403.086(6). The department, in cooperation with the water management districts and other interested parties, as appropriate, may develop suitable interim measures, best management practices, or other measures necessary to achieve the level of pollution reduction established by the department for nonagricultural nonpoint pollutant sources in allocations developed pursuant to paragraph (6)(b). These practices and measures may be adopted by rule by the department and the water management districts pursuant to ss. 120.536(1) and 120.54, and may be implemented by those parties responsible for nonagricultural nonpoint pollutant sources and the department and the water management districts shall assist with implementation. Where interim measures, best management practices, or other measures are adopted by rule, the effectiveness of such practices in achieving the levels of pollution reduction established in allocations developed by the department pursuant to paragraph (6)(b) shall be verified by the department. Implementation, in accordance with applicable rules, of practices that have been verified by the department to be effective at representative sites shall provide a presumption of compliance with state water quality standards and release from the provisions of s.376.307(5) for those pollutants addressed by the practices, and the department is not authorized to institute proceedings against the owner of the source of pollution to recover costs or damages associated with the contamination of surface or ground water caused by those pollutants. Such rules shall also incorporate provisions for a notice of intent to implement the practices and a system to assure the implementation of the practices, including recordkeeping requirements. Where water quality problems are detected despite the appropriate implementation, operation, and maintenance of best management practices and other measures according to rules adopted under this paragraph, the department or the water management districts shall institute a reevaluation of the best management practice or other measures. 1. The Department of Agriculture and Consumer Services may develop and adopt by rule pursuant to ss. 120.536(1) and 120.54 suitable interim measures, best management practices, or other measures necessary to achieve the level of pollution reduction established by the department for agricultural pollutant sources in allocations developed pursuant to paragraph (6)(b). These practices and measures may be implemented by those parties responsible for agricultural pollutant sources and the department, the water management districts, and the Department of Agriculture and Consumer Services shall assist with implementation. Where interim measures, best management practices, or other measures are adopted by rule, the effectiveness of such practices in achieving the levels of pollution reduction established in allocations developed by the department pursuant to paragraph (6)(b) shall be verified by the department. Implementation, in accordance with applicable rules, of practices that have been verified by the department to be effective at representative sites shall provide a presumption of compliance with state water quality standards and release from the provisions of s.376.307(5) for those pollutants addressed by the practices, and the department is not authorized to institute proceedings against the owner of the source of pollution to recover costs or damages associated with the contamination of surface or ground water caused by those pollutants. In the process of developing and adopting rules for interim measures, best management practices, or other measures, the Department of Agriculture and Consumer Services shall consult with the department, the Department of Health, the water management districts, representatives from affected farming groups, and environmental group representatives. Such rules shall also incorporate provisions for a notice of intent to implement the practices and a system to assure the implementation of the practices, including recordkeeping requirements. Where water quality problems are detected despite the appropriate implementation, operation, and maintenance of best management practices and other measures according to rules adopted under this paragraph, the Department of Agriculture and Consumer Services shall institute a reevaluation of the best management practice or other measure. 2. Individual agricultural records relating to processes or methods of production, or relating to costs of production, profits, or other financial information which are otherwise not public records, which are reported to the Department of Agriculture and Consumer Services pursuant to this paragraph or pursuant to any rule adopted pursuant to this paragraph shall be confidential and exempt from s. 119.07(1) and s. 24(a), Art. I of the State Constitution. Upon request of the department or any water management district, the Department of Agriculture and Consumer Services shall make such individual agricultural records available to that agency, provided that the confidentiality specified by this subparagraph for such records is maintained. This subparagraph is subject to the Open Government Sunset Review Act of 1995 in accordance with s. 119.15, and shall stand repealed on October 2, 2006, unless reviewed and saved from repeal through reenactment by the Legislature. The provisions of paragraphs (c) and (d) shall not preclude the department or water management district from requiring compliance with water quality standards or with current best management practice requirements set forth in any applicable regulatory program authorized by law for the purpose of protecting water quality. Additionally, paragraphs (c) and (d) are applicable only to the extent that they do not conflict with any rules promulgated by the department that are necessary to maintain a federally delegated or approved program. RULES.-- The department is authorized to adopt rules pursuant to ss. 120.536(1) and 120.54 for: Delisting water bodies or water body segments from the list developed under subsection (4) pursuant to the guidance under subsection (5); Administration of funds to implement the total maximum daily load program; Procedures for pollutant trading among the pollutant sources to a water body or water body segment, including a mechanism for the issuance and tracking of pollutant credits. Such procedures may be implemented through permits or other authorizations and must be legally binding. No rule implementing a pollutant trading program shall become effective prior to review and ratification by the Legislature; and The total maximum daily load calculation in accordance with paragraph (6)(a) immediately upon the effective date of this act, for those eight water segments within Lake Okeechobee proper as submitted to the United States Environmental Protection Agency pursuant to subsection (2). APPLICATION.-- The provisions of this section are intended to supplement existing law, and nothing in this section shall be construed as altering any applicable state water quality standards or as restricting the authority otherwise granted to the department or a water management district under this chapter or chapter 373. The exclusive means of state implementation of s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq. shall be in accordance with the identification, assessment, calculation and allocation, and implementation provisions of this section. CONSTRUCTION.-- Nothing in this section shall be construed as limiting the applicability or consideration of any mixing zone, variance, exemption, site specific alternative criteria, or other moderating provision. IMPLEMENTATION OF ADDITIONAL PROGRAMS.-- The department shall not implement, without prior legislative approval, any additional regulatory authority pursuant to s. 303(d) of the Clean Water Act or 40 C.F.R. part 130, if such implementation would result in water quality discharge regulation of activities not currently subject to regulation. In order to provide adequate due process while ensuring timely development of total maximum daily loads, proposed rules and orders authorized by this act shall be ineffective pending resolution of a s. 120.54(3), s. 120.56, s. 120.569, or s. 120.57 administrative proceeding. However, the department may go forward prior to resolution of such administrative proceedings with subsequent agency actions authorized by subsections (2)-(6), provided that the department can support and substantiate those actions using the underlying bases for the rules or orders without the benefit of any legal presumption favoring, or in deference to, the challenged rules or orders. Key Provisions of Law Referenced in Section 403.067, Florida Statutes Section 403.021, Florida Statutes Section 403.021, Florida Statutes, which is referenced in Subsection (1) of Section 403.067, Florida Statutes, provides, in pertinent part, as follows: The pollution of the air and waters of this state constitutes a menace to public health and welfare; creates public nuisances; is harmful to wildlife and fish and other aquatic life; and impairs domestic, agricultural, industrial, recreational, and other beneficial uses of air and water. It is declared to be the public policy of this state to conserve the waters of the state and to protect, maintain, and improve the quality thereof for public water supplies, for the propagation of wildlife and fish and other aquatic life, and for domestic, agricultural, industrial, recreational, and other beneficial uses and to provide that no wastes be discharged into any waters of the state without first being given the degree of treatment necessary to protect the beneficial uses of such water. * * * It is hereby declared that the prevention, abatement, and control of the pollution of the air and waters of this state are affected with a public interest, and the provisions of this act are enacted in the exercise of the police powers of this state for the purpose of protecting the health, peace, safety, and general welfare of the people of this state. The Legislature finds and declares that control, regulation, and abatement of the activities which are causing or may cause pollution of the air or water resources in the state and which are or may be detrimental to human, animal, aquatic, or plant life, or to property, or unreasonably interfere with the comfortable enjoyment of life or property be increased to ensure conservation of natural resources; to ensure a continued safe environment; to ensure purity of air and water; to ensure domestic water supplies; to ensure protection and preservation of the public health, safety, welfare, and economic well-being; to ensure and provide for recreational and wildlife needs as the population increases and the economy expands; and to ensure a continuing growth of the economy and industrial development. The Legislature further finds and declares that: Compliance with this law will require capital outlays of hundreds of millions of dollars for the installation of machinery, equipment, and facilities for the treatment of industrial wastes which are not productive assets and increased operating expenses to owners without any financial return and should be separately classified for assessment purposes. Industry should be encouraged to install new machinery, equipment, and facilities as technology in environmental matters advances, thereby improving the quality of the air and waters of the state and benefiting the citizens of the state without pecuniary benefit to the owners of industries; and the Legislature should prescribe methods whereby just valuation may be secured to such owners and exemptions from certain excise taxes should be offered with respect to such installations. Facilities as herein defined should be classified separately from other real and personal property of any manufacturing or processing plant or installation, as such facilities contribute only to general welfare and health and are assets producing no profit return to owners. In existing manufacturing or processing plants it is more difficult to obtain satisfactory results in treating industrial wastes than in new plants being now planned or constructed and that with respect to existing plants in many instances it will be necessary to demolish and remove substantial portions thereof and replace the same with new and more modern equipment in order to more effectively treat, eliminate, or reduce the objectionable characteristics of any industrial wastes and that such replacements should be classified and assessed differently from replacements made in the ordinary course of business. * * * It is the policy of the state to ensure that the existing and potential drinking water resources of the state remain free from harmful quantities of contaminants. The department, as the state water quality protection agency, shall compile, correlate, and disseminate available information on any contaminant which endangers or may endanger existing or potential drinking water resources. It shall also coordinate its regulatory program with the regulatory programs of other agencies to assure adequate protection of the drinking water resources of the state. It is the intent of the Legislature that water quality standards be reasonably established and applied to take into account the variability occurring in nature. The department shall recognize the statistical variability inherent in sampling and testing procedures that are used to express water quality standards. The department shall also recognize that some deviations from water quality standards occur as the result of natural background conditions. The department shall not consider deviations from water quality standards to be violations when the discharger can demonstrate that the deviations would occur in the absence of any human-induced discharges or alterations to the water body. Rule Chapter 62-302, Florida Administrative Code Rule Chapter 62-302, Florida Administrative Code, which is referenced in Subsection (3)(b) of Section 447.067, Florida Statutes, contains Florida's "[s]urface water quality standards." Rule 62-302.300, Florida Administrative Code, is entitled, "Findings, Intent, and Antidegradation Policy for Surface Water Quality," and provides as follows: Article II, Section 7 of the Florida Constitution requires abatement of water pollution and conservation and protection of Florida's natural resources and scenic beauty. Congress, in Section 101(a)(2) of the Federal Water Pollution Control Act, as amended,[14] declares that achievement by July 1, 1983, of water quality sufficient for the protection and propagation[15] of fish, shellfish, and wildlife, as well as for recreation in and on the water, is an interim goal to be sought whenever attainable. Congress further states, in Section 101(a)(3), that it is the national policy that the discharge of toxic pollutants in toxic amounts be prohibited. The present and future most beneficial uses of all waters of the State have been designated by the Department by means of the Classification system set forth in this Chapter pursuant to Subsection 403.061(10), F.S.[16] Water quality standards[17] are established by the Department to protect these designated uses.[18] Because activities outside the State sometimes cause pollution[19] of Florida's waters, the Department will make every reasonable effort to have such pollution abated. Water quality standards apply equally to and shall be uniformly enforced in both the public and private sector. Public interest shall not be construed to mean only those activities conducted solely to provide facilities or benefits to the general public. Private activities conducted for private purposes may also be in the public interest. The Commission, recognizing the complexity of water quality management and the necessity to temper regulatory actions with the technological progress and the social and economic well-being of people, urges, however, that there be no compromise where discharges of pollutants constitute a valid hazard to human health. The Commission requests that the Secretary seek and use the best environmental information available when making decisions on the effects of chronically and acutely toxic substances and carcinogenic, mutagenic, and teratogenic substances. Additionally, the Secretary is requested to seek and encourage innovative research and developments in waste treatment alternatives that might better preserve environmental quality or at the same time reduce the energy and dollar costs of operation. The criteria set forth in this Chapter are minimum levels which are necessary to protect the designated uses of a water body. It is the intent of this Commission that permit applicants should not be penalized due to a low detection limit associated with any specific criteria. (10)(a) The Department's rules that were adopted on March 1, 1979 regarding water quality standards are designed to protect the public health or welfare and to enhance the quality of waters of the State. They have been established taking into consideration the use and value of waters of the State for public water supplies, propagation of fish and wildlife, recreational purposes, and agricultural, industrial, and other purposes, and also taking into consideration their use and value for navigation. Under the approach taken in the formulation of the rules adopted in this proceeding: The Department's rules that were adopted on March 1, 1979 regarding water quality standards are based upon the best scientific knowledge related to the protection of the various designated uses of waters of the State; and The mixing zone,[20] zone of discharge, site specific alternative criteria, exemption, and equitable allocation provisions are designed to provide an opportunity for the future consideration of factors relating to localized situations which could not adequately be addressed in this proceeding, including economic and social consequences, attainability, irretrievable conditions, natural background,[21] and detectability. This is an even-handed and balanced approach to attainment of water quality objectives. The Commission has specifically recognized that the social, economic and environmental costs may, under certain special circumstances, outweigh the social, economic and environmental benefits if the numerical criteria are enforced statewide. It is for that reason that the Commission has provided for mixing zones, zones of discharge, site specific alternative criteria, exemptions and other provisions in Chapters 62-302, 62-4, and 62-6, F.A.C. Furthermore, the continued availability of the moderating provisions is a vital factor providing a basis for the Commission's determination that water quality standards applicable to water classes in the rule are attainable taking into consideration environmental, technological, social, economic and institutional factors. The companion provisions of Chapters 62-4 and 62-6, F.A.C., approved simultaneously with these Water Quality Standards are incorporated herein by reference as a substantive part of the State's comprehensive program for the control, abatement and prevention of water pollution. Without the moderating provisions described in (b)2. above, the Commission would not have adopted the revisions described in (b)1. above nor determined that they are attainable as generally applicable water quality standards. Section 403.021, Florida Statutes, declares that the public policy of the State is to conserve the waters of the State to protect, maintain, and improve the quality thereof for public water supplies, for the propagation of wildlife, fish and other aquatic life, and for domestic, agricultural, industrial, recreational, and other beneficial uses. It also prohibits the discharge of wastes into Florida waters without treatment necessary to protect those beneficial uses of the waters. The Department shall assure that there shall be achieved the highest statutory and regulatory requirements for all new and existing point sources, and all cost- effective and reasonable best management practices for nonpoint source control. For the purposes of this rule, highest statutory and regulatory requirements for new and existing point sources are those which can be achieved through imposition of effluent limits required under Sections 301(b) and 306 of the Federal Clean Water Act (as amended in 1987) and Chapter 403, F.S. For the purposes of this rule, cost-effective and reasonable best management practices for nonpoint source control are those nonpoint source controls authorized under Chapters 373 and 403, F.S., and Department rules. The Department finds that excessive nutrients (total nitrogen and total phosphorus) constitute one of the most severe water quality problems facing the State. It shall be the Department's policy to limit the introduction of man-induced nutrients into waters of the State. Particular consideration shall be given to the protection from further nutrient enrichment of waters which are presently high in nutrient concentrations or sensitive to further nutrient concentrations and sensitive to further nutrient loadings. Also, particular consideration shall be given to the protection from nutrient enrichment of those waters presently containing very low nutrient concentrations: less than 0.3 milligrams per liter total nitrogen or less than 0.04 milligrams per liter total phosphorus. Existing uses and the level of water quality necessary to protect the existing uses shall be fully maintained and protected. Such uses may be different or more extensive than the designated use. Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions. If the Department finds that a new or existing discharge will reduce the quality of the receiving waters below the classification established for them or violate any Department rule or standard, it shall refuse to permit the discharge. If the Department finds that a proposed new discharge or expansion of an existing discharge will not reduce the quality of the receiving waters below the classification established for them, it shall permit the discharge if such degradation is necessary or desirable under federal standards and under circumstances which are clearly in the public interest, and if all other Department requirements are met. Projects permitted under Part IV of Chapter 373, F.S., shall be considered in compliance with this subsection if those projects comply with the requirements of subsection 373.414(1), F.S.; also projects permitted under the grandfather provisions of Sections 373.414(11) through (16), F.S., or permitted under Section 373.4145, F.S., shall be considered in compliance with this subsection if those projects comply with the requirements of Rule 62-312.080(2), F.A.C. (18)(a) Except as provided in subparagraphs (b) and (c) of this paragraph, an applicant for either a general permit or renewal of an existing permit for which no expansion of the discharge is proposed is not required to show that any degradation from the discharge is necessary or desirable under federal standards and under circumstances which are clearly in the public interest. If the Department determines that the applicant has caused degradation of water quality over and above that allowed through previous permits issued to the applicant, then the applicant shall demonstrate that this lowering of water quality is necessary or desirable under federal standards and under circumstances which are clearly in the public interest. These circumstances are limited to cases where it has been demonstrated that degradation of water quality is occurring due to the discharge. If the new or expanded discharge was initially permitted by the Department on or after October 4, 1989, and the Department determines that an antidegradation analysis was not conducted, then the applicant seeking renewal of the existing permit shall demonstrate that degradation from the discharge is necessary or desirable under federal standards and under circumstances which are clearly in the public interest. Rule 62-302.400, Florida Administrative Code, classifies all surface waters of the state "according to designated uses." The rule provides for five classifications: Class I ("Potable Water Supplies"); Class II ("Shellfish Propagation or Harvesting"); Class III ("Recreation, Propagation of a Healthy, Well-Balanced Population of Fish and Wildlife": Fresh and Marine); Class IV ("Agricultural Water Supplies"); and Class V ("Navigation, Utility and Industrial Use").22 See Rule 62-302.400(1), Florida Administrative Code. These "[w]ater quality classifications are arranged in order of degree of protection required, with Class I water having generally the most stringent water quality criteria23 and Class V the least. However, Class I, II, and III surface waters share water quality criteria established to protect recreation and the propagation and maintenance of a healthy well-balanced population of fish and wildlife." Rule 62-302.400(4), Florida Administrative Code. Waters designated as "Outstanding Florida Waters and Outstanding National Resource Waters" are given "special protection." See Rule 62-302.700(1) and (7), Florida Administrative Code ("It shall be the Department policy to afford the highest protection to Outstanding Florida Waters and Outstanding National Resource Waters. No degradation of water quality, other than that allowed in Rule 62-4.242(2) and (3), F.A.C., is to be permitted in Outstanding Florida Waters and Outstanding National Resource Waters, respectively, notwithstanding any other Department rules that allow water quality lowering. . . . The policy of this section shall be implemented through the permitting process pursuant to Section 62-4.242, F.A.C.").24 According to Subsection (5) of Rule 62-302.400, Florida Administrative Code, Criteria applicable to a classification are designed to maintain the minimum conditions necessary to assure the suitability of water for the designated use of the classification. In addition, applicable criteria are generally adequate to maintain minimum conditions required for the designated uses of less stringently regulated classifications. Therefore, unless clearly inconsistent with the criteria applicable, the designated uses of less stringently regulated classifications shall be deemed to be included within the designated uses of more stringently regulated classifications. "The specific water quality criteria corresponding to each surface water classification are listed in Rules 62-302.500 and 62-302.530," Florida Administrative Code. Rule 62- 302.400(3), Florida Administrative Code. Subsection (1) of Rule 62-302.500, Florida Administrative Code, sets forth what are known as the "free froms." It provides as follows: Minimum Criteria. All surface waters of the State shall at all places and at all times be free from: Domestic, industrial, agricultural, or other man-induced non-thermal components of discharges which, alone or in combination with other substances or in combination with other components of discharges (whether thermal or non-thermal): Settle to form putrescent deposits or otherwise create a nuisance; or Float as debris, scum, oil, or other matter in such amounts as to form nuisances; or Produce color, odor, taste, turbidity, or other conditions in such degree as to create a nuisance; or Are acutely toxic; or Are present in concentrations which are carcinogenic, mutagenic, or teratogenic to human beings or to significant, locally occurring, wildlife or aquatic species, unless specific standards are established for such components in Rules 62-302.500(2) or 62-302.530; or Pose a serious danger to the public health, safety, or welfare. Thermal components of discharges which, alone, or in combination with other discharges or components of discharges (whether thermal or non-thermal): Produce conditions so as to create a nuisance; or Do not comply with applicable provisions of Rule 62-302.500(3), F.A.C. Silver in concentrations above 2.3 micrograms/liter in predominantly marine waters. Rule 62-302.530, Florida Administrative Code, has a table that contains both numeric and narrative surface water quality criteria to be applied except within zones of mixing. The left-hand column of the Table is a list of constituents [or parameters] for which a surface water criterion exists. The headings for the water quality classifications are found at the top of the Table. Applicable criteria lie within the Table. The individual criteria should be read in conjunction with other provisions in water quality standards, including Rules 62- 302.500 and 62-302.510, F.A.C. The criteria contained in Rules 62-302.500 or 62-302.510 also apply to all waters unless alternative or more stringent criteria are specified in Rule 62-302.530, F.A.C. Unless otherwise stated, all criteria express the maximum not to be exceeded at any time. In some cases, there are separate or additional limits, such as annual average criteria, which apply independently of the maximum not to be exceeded at any time. The following are the specific parameters listed in the table: Alkalinity; Aluminum; Ammonia (un-ionized); Antimony; Arsenic (total and trivalent); Bacteriological Quality (Fecal Coliform Bacteria); Bacteriological Quality (Total Coliform Bacteria); Barium; Benzene; Beryllium; Biological Integrity; BOD (Biochemical Oxygen Demand); Bromine (free molecular); Cadmium; Carbon Tetrachloride; Chlorides; Chlorine (total residual); Chromium (trivalent and hexavalent); Chronic Toxicity; Color; Conductance (specific); Copper; Cyanide; Detergents; 1,1- Dichloroethylene (1,1-di-chloroethene); Dichloromethane (methylene chloride); 2,4-Dinitrotoluene; Dissolved Oxygen; Dissolved Solids; Fluorides; Halomethanes; Hexachlorobutadiene; Iron; Lead; Manganese; Mercury; Nickel; Nitrate; Nuisance Species;25 Nutrients;26 Odor; Oils and Greases; Pesticides and Herbicides (2,4,5-TP; 2-4-D; Aldrin; Betahexachlorocyclohexane; Chlordane; DDT; Demeton; Dieldrin; Endosulfan; Endrin: Guthion; Heptachlor; Lindane; Malathion; Methoxychlor; Mirex; Parathion; Toxaphene); pH; Phenolic Compounds; Phosphorous (Elemental); Polycyclic Aromatic Hydrocarbons; Radioactive Substances; Selenium; Silver; 1,1,2,2-Tetrachloroethane; Tetrachloroethylene; Thallium; Total Dissolved Gases; Transparency; Trichloroeylene (trichloroethene); Turbidity; and Zinc. Rule 62-302.800, Florida Administrative Code, provides for the establishment of "[s]ite [s]pecific [a]lternative [c]riteria" where a water body, or portion thereof, does "not meet a particular ambient water quality criterion specified for its classification, due to natural background conditions or man- induced conditions which cannot be controlled or abated."27 Section 303(d) of the Clean Water Act Section 303(d) of the Clean Water Act (33 U.S.C. Section 1313(d)), which is referenced in Subsections (1), (2), (9), and (11) of Section 447.067, Florida Statutes, provides as follows: Identification of areas with insufficient controls; maximum daily load; certain effluent limitations revision (1)(A) Each State shall identify those waters within its boundaries for which the effluent limitations required by section 1311(b)(1)(A) and section 1311(b)(1)(B) of this title are not stringent enough to implement any water quality standard applicable to such waters. The State shall establish a priority ranking for such waters, taking into account the severity of the pollution and the uses to be made of such waters. Each State shall identify those waters or parts thereof within its boundaries for which controls on thermal discharges under section 1311 of this title are not stringent enough to assure protection and propagation of a balanced indigenous population of shellfish, fish, and wildlife. Each State shall establish for the waters identified in paragraph (1)(A) of this subsection, and in accordance with the priority ranking, the total maximum daily load, for those pollutants which the Administrator identifies under section 1314(a)(2) of this title as suitable for such calculation. Such load shall be established at a level necessary to implement the applicable water quality standards with seasonal variations and a margin of safety which takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality. Each State shall submit to the Administrator from time to time, with the first such submission not later than one hundred and eighty days after the date of publication of the first identification of pollutants under section 1314(a)(2)(D) of this title, for his approval the waters identified and the loads established under paragraphs (1)(A), (1)(B), (1)(C), and (1)(D) of this subsection. The Administrator shall either approve or disapprove such identification and load not later than thirty days after the date of submission. If the Administrator approves such identification and load, such State shall incorporate them into its current plan under subsection (e) of this section. If the Administrator disapproves such identification and load, he shall not later than thirty days after the date of such disapproval identify such waters in such State and establish such loads for such waters as he determines necessary to implement the water quality standards applicable to such waters and upon such identification and establishment the State shall incorporate them into its current plan under subsection (e) of this section. For the specific purpose of developing information, each State shall identify all waters within its boundaries which it has not identified under paragraph (1)(A) and (1)(B) of this subsection and estimate for such waters the total maximum daily load with seasonal variations and margins of safety, for those pollutants which the Administrator identifies under section 1314(a)(2) of this title as suitable for such calculation and for thermal discharges, at a level that would assure protection and propagation of a balanced indigenous population of fish, shellfish and wildlife. Limitations on revision of certain effluent limitations Standard not attained For waters identified under paragraph (1)(A) where the applicable water quality standard has not yet been attained, any effluent limitation based on a total maximum daily load or other waste load allocation established under this section may be revised only if (i) the cumulative effect of all such revised effluent limitations based on such total maximum daily load or waste load allocation will assure the attainment of such water quality standard, or (ii) the designated use which is not being attained is removed in accordance with regulations established under this section. Standard attained For waters identified under paragraph (1)(A) where the quality of such waters equals or exceeds levels necessary to protect the designated use for such waters or otherwise required by applicable water quality standards, any effluent limitation based on a total maximum daily load or other waste load allocation established under this section, or any water quality standard established under this section, or any other permitting standard may be revised only if such revision is subject to and consistent with the antidegradation policy established under this section. Development of Proposed Rule Chapter 62-303, Florida Administrative Code The rule development process that culminated in the adoption of proposed Rule Chapter 62-303, Florida Administrative Code, began shortly after the enactment of Chapter 99-223, Laws of Florida, when the Department decided, consistent with its routine practice in complex rulemaking cases, to form a technical advisory committee (TAC) to assist the Department in developing an "identification of impaired surface waters" rule by rendering advice to the Department concerning technical and scientific matters.28 The Department solicited nominations for TAC membership from stakeholder groups, but ultimately rejected the nominations it received and instead selected individuals it believed were best qualified to contribute based upon their expertise (in areas including water quality monitoring, water quality chemistry, water quality modeling, estuarine ecology, wetland ecology, analytical chemistry, statistics, bioassessment procedures, limnology, coastal ecology, fish biology, and hydrology). The first TAC meeting was held August 12, 1999. There were 12 subsequent TAC meetings, the last two of which were held on August 4, 2000, and August 28, 2000. The TAC meetings were held in various locations throughout the state (Pensacola, Tallahassee, Jacksonville, Gainesville, Orlando, Tampa, St. Petersburg, and West Palm Beach) and were open to public, with members of the public able to make comments. All 13 TAC meetings were noticed in the Florida Administrative Weekly. The TAC meetings were chaired by Mr. Joyner, who was the Department employee primarily responsible for drafting an "identification of impaired surface waters" rule. Mr. Joyner emphasized to the TAC members that their role was simply to give advice and make recommendations to the Department and that their advice and recommendations might not be followed. As it turned out, there were several instances where the Department rejected a TAC recommendation. In addition to seeking the advice of experts on technical and scientific matters, the Department wanted to hear from stakeholders regarding policy issues. Towards that end, it took steps to establish a Policy Advisory Committee (PAC). An organizational meeting of the PAC was held on March 24, 2000, in Tallahassee, the day after the seventh TAC meeting (which was also held in Tallahassee). After being told about the government in the sunshine and public records laws with which they would have to comply as PAC members, "no one wanted to be on the PAC." The consensus of those present was to "just have public meetings [to elicit stakeholder input] and not have a formal PAC." The Department acted accordingly. Following this March 24, 2000, meeting, the Department abandoned its efforts to form a PAC and instead held four public meetings to obtain input from the public regarding policy questions involved in crafting an "identification of impaired surface waters" rule. The last two of these public meetings were combined with the last two TAC meetings (held on August 4, 2000, and August 28, 2000). Each of the five "policy" public meetings held by the Department (including the March 24, 2000, PAC organizational meeting) were noticed in the Florida Administrative Weekly. The Department also held two rule development workshops (one on September 7, 2000, and the other on December 7, 2000), both of which were also noticed in the Florida Administrative Weekly. Between the time these two rule development workshops were held, Mr. Joyner met with representatives of regulated interests and the environmental community to discuss their thoughts regarding what should be included in an "identification of impaired surface waters" rule. Throughout the rule development process, the Department also received and considered written comments from interested persons. Information about the rule development process was posted on the Department's web site for the public to read. The Department e-mailed approximately 350 persons (whose names were on a list of interested persons compiled by the Department) to notify them in advance of any meetings and workshops on proposed Rule Chapter 62-303, Florida Administrative Code. Proposed Rule Chapter 62-303, Florida Administrative Code, underwent numerous revisions during the rule development process. Whenever a revised version of the proposed rule chapter was prepared, the Department sent a copy of it, via e-mail, to the persons on the Department's 350 "interested persons" e-mail list. Changes to proposed Rule Chapter 62-303, Florida Administrative Code, were made not only in response to comments made by members of the TAC and stakeholders, but also in response to comments made by staff of the Region IV office of the United States Environmental Protection Agency (EPA), with whom Department staff had extensive discussions regarding the proposed rule chapter. The Environmental Regulation Commission (ERC) "exercise[s] the standard-setting authority of the [D]epartment."29 In March of 2001, approximately 19 months after the first TAC meeting, the Department was ready to present its most recent version of proposed Rule Chapter 62-303, Florida Administrative Code, to the ERC for adoption. Accordingly, it published a Notice of Proposed Rulemaking in the March 23, 2001 (Volume 27, Number 12) edition of the Florida Administrative Weekly announcing that a hearing on the proposed rule chapter would be held before the ERC on April 26, 2001. The Notice contained the complete text of the proposed rule chapter, as well as the following statement of “[p]urpose, effect, and summary”: The purpose of the proposed new rule is to establish a methodology to identify impaired waters that will be included on the State's verified list of impaired waters, for which the Department will calculate Total Maximum Daily Loads, pursuant to subsection 403.067(4), Florida Statutes (F.S.), and which will be submitted to the United States Environmental Protection Agency pursuant to subparagraphs 303(d)(1)(A) and 303(d)(1)(C) of the Clean Water Act. As directed by 403.067, F.S., the development of the State's 303(d) list will be a two-step process; waters will first be identified as potentially impaired and then any impairment will be verified before listing the water. The rule implements this statutory direction by providing a methodology to identify surface waters of the state that will be included on a "planning list" of waters. Pursuant to subsection 403.067(2) and (3), F.S., the Department will evaluate the data used to place these waters on the planning list, verify that the data meet quality assurance and data sufficiency requirements of the "verified list," and collect additional data, as needed, to complete the assessment. The rule also provides information about the listing cycle, the format of the verified list, and delisting procedures. At the ERC's regularly scheduled March 29, 2001, meeting, Mr. Joyner formally briefed the ERC on the status of the rule development process (as he had previously done at ERC's regularly scheduled meetings on June 29, 2000, August 24, 2000, December 5, 2000, and January 25, 2001). At the March 29, 2001, meeting, Mr. Joyner went through the proposed rule chapter with the ERC "paragraph by paragraph." As noted above, prior to the scheduled April 26, 2001, ERC hearing, petitions challenging the proposed rule chapter (as published in the March 23, 2001, edition of the Florida Administrative Weekly) were filed with the Division by Petitioner Lane (on April 10, 2001) and by all Joint Petitioners excluding Save Our Suwannee, Inc. (on April 13, 2001). On April 21, 2001, all Joint Petitioners excluding Save Our Suwannee, Inc., filed a Request with ERC asking: that rulemaking proceedings regarding proposed Rule 62-303 be conducted under the provisions of Sections 120.569 and 120.57, Florida Statutes, as to all parties, or alternatively at least to the six petitioners; that the evidentiary processes involved under the provisions of Sections 120.569 and 120.57, Florida Statutes, be combined with the already pending DOAH proceedings of all parties, or at least the six petitioners; and that rulemaking proceedings, as to proposed Rule 62-303, be suspended pending completion of the evidentiary processes before DOAH as well as the DOAH ruling on the pending petitions, as to all parties or at least the six petitioners. The Request was considered and denied by the ERC at the outset of its hearing on the proposed rule chapter, which was held as scheduled on April 26, 2001. That same day, the ERC issued a written order denying the Request, which read, in pertinent part as follows: But for their request to combine the requested evidentiary proceeding with the existing rule challenges pending before DOAH, Petitioners have requested conversion of the instant rulemaking proceeding to an evidentiary hearing or "draw out." A draw out is authorized under proper circumstances by Section 120.54(3)(c)2, Florida Statutes, which states: "Rulemaking proceedings shall be governed solely by the provisions of this section unless a person timely asserts that the person's substantial interests will be affected in the proceeding and affirmatively demonstrates to the agency that the proceeding does not provide adequate opportunity to protect those interests. If the agency determines that the rulemaking proceeding is not adequate to protect the person's interests, it shall suspend the rulemaking proceeding and convene a separate proceeding under the provisions of ss. 120.569 and 120.57. Similarly situated persons may be requested to join and participate in the separate proceeding. Upon conclusion of the separate proceeding, the rulemaking proceeding shall be resumed." A participant in the rulemaking proceeding who requests such relief is asking to "draw out" of the rulemaking proceeding and for the agency to afford the party an evidentiary hearing in lieu thereof.[30] A copy of each of the six petitions filed by the parties with DOAH was attached to the joint notice now before the Commission. But for minor variations in allegations to establish standing, each of the six petitions sets out seventeen (17) counts with each count asserting that a particular provision, or provisions, of proposed Rule 62-303 is an invalid exercise of delegated legislative authority or otherwise a violation of Section 403.067, F.S., or the federal Clean Water Act. None of the individual petitions, or the joint notice, demonstrate that the pending rulemaking proceeding fails to protect the petitioners' substantial interests, nor have petitioners raised any factual issues that would require a separate evidentiary hearing beyond the scope of the DOAH proceedings already pending. Under these circumstances, Section 120.56(2)(b), F.S., specifically allows an agency to proceed with all other steps in the rulemaking process, except for final adoption, while a DOAH rule challenge is pending.[31] In view of the foregoing, and in exercising its discretion as afforded by Section 120.54(3)(c)2., F.S., the Commission has determined that the rulemaking proceeding adequately protects the interests asserted by each of the six petitioners who joined in the joint notice as filed April 20th, 2001. Accordingly, the petitioners' joint request for relief therein is denied. The version of the proposed rule chapter published in the March 23, 2001, edition of the Florida Administrative Weekly, with some modifications, was adopted by the ERC at its April 26, 2001, meeting (at which members of the public were given the opportunity to comment prior to ERC deliberation). The modifications were noticed in a Notice of Change published in the May 11, 2001, edition (Volume 27, Number 19) of the Florida Administrative Weekly. Contents of the ERC-Adopted Version of Proposed Rule Chapter 62- 303, Florida Administrative Code Proposed Rule Chapter 62-303, Florida Administrative Code, is entitled, "Identification of Impaired Surface Waters." It is divided into four parts. Part I: Overview Part I of proposed Rule Chapter 62-303, Florida Administrative Code, contains the following "general" provisions: Proposed Rules 62-303.100, 62-303.150, and 62- 303.200, Florida Administrative Code. Part I: Proposed Rule 62-303.100, Florida Administrative Code Proposed Rule 62-303.100, Florida Administrative Code, is entitled, "Scope and Intent." It provides an overview of the proposed rule chapter and reads as follows: This chapter establishes a methodology to identify surface waters of the state that will be included on the state's planning list of waters that will be assessed pursuant to subsections 403.067(2) and (3), Florida Statutes (F.S.). It also establishes a methodology to identify impaired waters that will be included on the state's verified list of impaired waters, for which the Department will calculate Total Maximum Daily Loads (TMDLs), pursuant to subsection 403.067(4) F.S., and which will be submitted to the United States Environmental Protection Agency (EPA) pursuant to paragraph 303(d)(1) of the Clean Water Act (CWA). Subsection 303(d) of the CWA and section 403.067, F.S., describe impaired waters as those not meeting applicable water quality standards, which is a broad term that includes designated uses, water quality criteria, the Florida antidegradation policy, and moderating provisions. However, as recognized when the water quality standards were adopted, many water bodies naturally do not meet one or more established water quality criteria at all times, even though they meet their designated use.[32] Data on exceedances of water quality criteria will provide critical information about the status of assessed waters, but it is the intent of this chapter to only list waters on the verified list that are impaired due to point source or nonpoint source pollutant discharges. It is not the intent of this chapter to include waters that do not meet water quality criteria solely due to natural conditions or physical alterations of the water body not related to pollutants. Similarly, it is not the intent of this chapter to include waters where designated uses are being met and where water quality criteria exceedances are limited to those parameters for which permitted mixing zones or other moderating provisions (such as site-specific alternative criteria) are in effect. Waters that do not meet applicable water quality standards due to natural conditions or to pollution not related to pollutants shall be noted in the state's water quality assessment prepared under subsection 305(b) of the CWA. This chapter is intended to interpret existing water quality criteria and evaluate attainment of established designated uses as set forth in Chapter 62-302, F.A.C., for the purposes of identifying water bodies or segments for which TMDLs will be established. It is not the intent of this chapter to establish new water quality criteria or standards, or to determine the applicability of existing criteria under other provisions of Florida law. In cases where this chapter relies on numeric indicators of ambient water quality as part of the methodology for determining whether existing narrative criteria are being met, these numeric values are intended to be used only in the context of developing a planning list and identifying an impaired water pursuant to this chapter. As such, exceedances of these numeric values shall not, by themselves, constitute violations of Department rules that would warrant enforcement action. Nothing in this rule is intended to limit any actions by federal, state, or local agencies, affected persons, or citizens pursuant to other rules or regulations. Pursuant to section 403.067, F.S., impaired waters shall not be listed on the verified list if reasonable assurance is provided that, as a result of existing or proposed technology-based effluent limitations and other pollution control programs under local, state, or federal authority, they will attain water quality standards in the future and reasonable progress towards attainment of water quality standards will be made by the time the next 303(d) list is scheduled to be submitted to EPA. Specific Authority 403.061, 403.067, FS. Law Implemented 403.021(11). 403.062, 403.067, FS. History -- New Subsection (1) of proposed Rule 62-303.100, Florida Administrative Code, refers to the narrowing and winnowing process (more fully described in subsequent portions of the proposed rule chapter) that will yield the Department's "updated list" of waters for which TMDLs will be calculated, which list will be submitted to the EPA in accordance with Section 303(d) of the Clean Water Act. (The Department last submitted such a list to the EPA in 1998. This list is referred to by the Department as its 1998 303(d) list.) The Department's intent not to include on its "updated list" of waters for which TMDLs will be calculated those "[w]aters that do not meet applicable water quality standards due to natural conditions or to pollution not related to pollutants," as provided in Subsection (2) of proposed Rule 62- 303.100, Florida Administrative Code, is consistent with the view expressed in Section 403.067, Florida Statutes, that TMDLs are appropriate only where there is man-induced pollution involving the discharge (from either a point or nonpoint source) of identifiable pollutants. See, e.g., Section 403.067(1), Florida Statutes ("[T]he development of a total maximum daily load program for state waters as required by s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq. will promote improvements in water quality throughout the state through the coordinated control of point and nonpoint sources of pollution"); Section 403.067(4), Florida Statutes ("If a surface water or water segment is to be listed under this subsection, the department must specify the particular pollutants causing the impairment and the concentration of those pollutants causing the impairment relative to the water quality standard."); and Section 403.067(6)(a)2., Florida Statutes ("For waters determined to be impaired due solely to factors other than point and nonpoint sources of pollution, no total maximum daily load will be required."). While "[w]aters that do not meet applicable water quality standards due to natural conditions or to pollution not related to pollutants" will not appear on the Department's "updated list" of waters for which TMDLs will be calculated, they will be included in the "water quality assessment prepared under subsection 305(b) of the CWA" (305(b) Report), which provides as follows: Each State shall prepare and submit to the Administrator by April 1, 1975, and shall bring up to date by April 1, 1976, and biennially thereafter, a report which shall include-- a description of the water quality of all navigable waters in such State during the preceding year, with appropriate supplemental descriptions as shall be required to take into account seasonal, tidal, and other variations, correlated with the quality of water required by the objective of this chapter (as identified by the Administrator pursuant to criteria published under section 1314(a) of this title) and the water quality described in subparagraph (B) of this paragraph; an analysis of the extent to which all navigable waters of such State provide for the protection and propagation of a balanced population of shellfish, fish, and wildlife, and allow recreational activities in and on the water; an analysis of the extent to which the elimination of the discharge of pollutants and a level of water quality which provides for the protection and propagation of a balanced population of shellfish, fish, and wildlife and allows recreational activities in and on the water, have been or will be achieved by the requirements of this chapter, together with recommendations as to additional action necessary to achieve such objectives and for what waters such additional action is necessary; an estimate of (i) the environmental impact, (ii) the economic and social costs necessary to achieve the objective of this chapter in such State, (iii) the economic and social benefits of such achievement, and (iv) an estimate of the date of such achievement; and a description of the nature and extent of nonpoint sources of pollutants, and recommendations as to the programs which must be undertaken to control each category of such sources, including an estimate of the costs of implementing such programs. The Administrator shall transmit such State reports, together with an analysis thereof, to Congress on or before October 1, 1975, and October 1, 1976, and biennially thereafter. The declaration made in Subsection (3) of proposed Rule 62-303.100, Florida Administrative Code, that "[t]his chapter is intended to interpret existing water quality criteria and evaluate attainment of established designated uses as set forth in Chapter 62-302, F.A.C., for the purposes of identifying water bodies or segments for which TMDLs will be established" is similar to that made in Subsection (9) of Section 403.067, Florida Statutes, that "[t]he provisions of this section are intended to supplement existing law, and nothing in this section shall be construed as altering any applicable state water quality standards." Subsection (5) of proposed Rule 62-303.100, Florida Administrative Code, together with proposed Rule 62-303.600, Florida Administrative Code (which will be discussed later), are designed to give effect to and make more specific the language in Subsection (4) of Section 403.067, Florida Statutes, that an impaired water may be listed on the Department's "updated list" of waters for which TMDLs will be calculated only "if technology-based effluent limitations and other pollution control programs under local, state, or federal authority, including Everglades restoration activities pursuant to s. 373.4592 and the National Estuary Program, which are designed to restore such waters for the pollutant of concern are not sufficient to result in attainment of applicable surface water quality standards." Section 403.061, Florida Statutes, which is cited as the "[s]pecific [a]uthority" for proposed Rule 62-303.100, Florida Statutes (and every other proposed rule in the proposed rule chapter), authorizes the Department to, among other things, "[a]dopt rules pursuant to ss. 120.536(1) and 120.54 to implement the provisions of [Chapter 403, Florida Statutes]." See Section 403.061(7), Florida Statutes. Section 403.062, Florida Statutes, which is included among the statutory provisions cited in proposed Rule 62- 303.100, Florida Statutes (and every other proposed rule in the proposed rule chapter) as the "[l]aw [i]mplemented," reads as follows: Code Pollution control; underground, surface, and coastal waters.-- The department and its agents shall have general control and supervision over underground water, lakes, rivers, streams, canals, ditches, and coastal waters under the jurisdiction of the state insofar as their pollution may affect the public health or impair the interest of the public or persons lawfully using them. Part I: Proposed Rule 62-303.150, Florida Administrative Proposed Rule 62-303.150, Florida Administrative Code, explains the "[r]elationship [b]etween [p]lanning and [v]erified [l]ists." It provides as follows: The Department shall follow the methodology in Section 62-303 300 to develop a planning list pursuant to subsection 403.067(2), F.S. As required by subsection 403.067(2), F.S., the planning list shall not be used in the administration or implementation of any regulatory program, and shall be submitted to EPA for informational purposes only. Waters on this planning list will be assessed pursuant to subsection 403.067(3) F.S., as part of the Department's watershed management approach. During this assessment, the Department shall determine whether the water body is impaired and whether the impairment is due to pollutant discharges using the methodology in Part III. The resultant verified list of impaired waters, which is the list of waters for which TMDLs will be developed by the Department pursuant to subsection 403.067(4), will be adopted by Secretarial Order and will be subject to challenge under subsection [sic] 120.569 and 120.57 F.S. Once adopted, the list will be submitted to the EPA pursuant to paragraph 303(d)(1) of the CWA. Consistent with state and federal requirements, opportunities for public participation, including workshops, meetings, and periods to submit comments on draft lists, will be provided as part of the development of planning and verified lists. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The initial drafts of proposed Rule Chapter 62-303, Florida Administrative Code, provided for merely a single list of impaired waters needing TMDLs. It was only after the last TAC meeting (and before the first rule development workshop) that the concept of having two lists (a preliminary, "planning list" of potentially impaired waters requiring further assessment and a final, "verified list . . . of waters for which TMDLs will be developed by the Department") was incorporated into proposed Rule Chapter 62-303, Florida Administrative Code, by Department staff (although the idea of having a "potentially impaired subset" of impaired waters was discussed at TAC meetings). Such action was taken in response to concerns raised during the rule development process that the proposed rule chapter, as then drafted with its one-list methodology, "was too restrictive, that it would only get a small subset of waters on [the Departments 303(d)] list." To decrease, in a manner consistent with the provisions of Section 403.067, Florida Statutes, the chance that an impaired water needing a TMDL would be erroneously excluded, Department staff revised the proposed rule chapter to provide for a two-step listing process where potentially impaired waters would first be placed on a "planning list" based upon criteria generally less "restrictive" than the listing criteria contained in the previous drafts of the proposed rule chapter and then further tested (if necessary) and assessed to verify if, based upon criteria generally more rigorous than the "planning list" criteria, they should be included on a "verified list" of waters needing TMDLs (to be submitted to the EPA as the state's "updated" 303(d) list). Weighing against Department staff making it any easier for a water to be placed on the "verified list" was the significant regulatory consequence of such action. Erroneously listing a water as needing a TMDL would result in the unnecessary expenditure of considerable time, money, and effort. The more rigorous the listing criteria, the less likely it would be that a water would be listed erroneously and such unnecessary expenditures made. Subsequent to the ERC's adoption of proposed Rule Chapter 62-303, Florida Administrative Code, the National Research Council (NRC),33 through one of its committees,34 acting at the request of Congress to analyze the scientific basis of the nationwide TMDL program, issued a report entitled, "Assessing the TMDL Approach to Water Quality Management" (NRC Publication). In the NRC Publication, the committee endorses a "two-list process" like the one incorporated in proposed Rule Chapter 62-303, Florida Administrative Code, explaining as follows: Determining whether there should be some minimum threshold of data available when evaluating waterbodies for attainment of water quality standards is an issue of great concern to states. On the one hand, many call for using only the "best science" in making listing decisions, while others fear that many impaired waters will not be identified in the wait for additional data. The existence of a preliminary list addresses these concerns by focusing attention on waters suspected to be impaired without imposing on stakeholders and the agencies the consequences of TMDL development, until additional information is developed and evaluated. According to Subsection (1) of proposed Rule 62- 303.150, Florida Administrative Code, "[w]aters on th[e] planning list will be assessed pursuant to subsection 403.067(3) F.S., as part of the Department's watershed management approach." The following are the major concepts incorporated in the "Department's watershed management approach": The basin management unit is the geographic or spatial unit used to divide the state into smaller areas for assessment- -generally groups of Hydrologic Unit Codes (HUCs)[35] . . . . The basin management cycle is the five- year cycle within which watersheds are assessed and management plans developed and implemented. The Management Action Plan (MAP), a document developed over the five-year cycle and subsequently updated every five years, describes the watershed's problems and how participants plan to address them. Forums and communications networks allow participants to collect and evaluate as much information as possible on their individual basins and to reach a consensus on strategic monitoring, priority water bodies, and management strategies. The statewide basin management schedule establishes the proposed sequence for assessing individual watersheds. . . . Each individual basin cycle under the "Department's watershed management approach" takes five years to complete, and is "repeated every five years." It is, in other words, an iterative process. The five phases of the cycle are as follows: Phase I: Preliminary Basin Assessment; Phase II: Strategic Monitoring; Phase III: Data Analysis and TMDL Development; Phase IV: Management Action Plan; and Phase V: Implementation. The first two phases of the cycle are discussed in greater detail in proposed Rule 62-303.700, Florida Administrative Code. Part I: Proposed Rule 62-303.200, Florida Administrative Code Proposed Rule 62-303.200, Florida Administrative Code, contains definitions of various terms and phrases used in proposed Rule Chapter 62-303, Florida Administrative Code. It provides as follows: As used in this chapter: "BioRecon" shall mean a bioassessment conducted following the procedures outlined in "Protocols for Conducting a Biological Reconnaissance in Florida Streams," Florida Department of Environmental Protection, March 13. 1995, which is incorporated by reference. "Clean techniques" shall mean those applicable field sampling procedures and analytical methods referenced in "Method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels, July 1996, USEPA. Office of Water, Engineering and Analysis Division. Washington, D.C.," which is incorporated by reference. "Department" or "DEP" shall mean the Florida Department of Environmental Protection. "Designated use" shall mean the present and future most beneficial use of a body of water as designated by the Environmental Regulation Commission by means of the classification system contained in Chapter 62-302, F.A.C. "Estuary" shall mean predominantly marine regions of interaction between rivers and nearshore ocean waters, where tidal action and river flow mix fresh and salt water. Such areas include bays, mouths of rivers, and lagoons. "Impaired water" shall mean a water body or water body segment that does not meet its applicable water quality standards as set forth in Chapters 62-302 and 62-4 F.A.C., as determined by the methodology in Part III of this chapter, due in whole or in part to discharges of pollutants from point or nonpoint sources. "Lake Condition Index" shall mean the benthic macroinvertebrate component of a bioassessment conducted following the procedures outlined in "Development of Lake Condition Indexes (LCI) for Florida," Florida Department of Environmental Protection, July, 2000, which is incorporated by reference. "Natural background" shall mean the condition of waters in the absence of man- induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody or on historical pre-alteration data. "Nuisance species" shall mean species of flora or fauna whose noxious characteristics or presence in sufficient number, biomass, or areal extent may reasonably be expected to prevent, or unreasonably interfere with, a designated use of those waters. "Physical alterations" shall mean human-induced changes to the physical structure of the water body. "Planning list" shall mean the list of surface waters or segments for which assessments will be conducted to evaluate whether the water is impaired and a TMDL is needed, as provided in subsection 403.067(2), F.S. "Pollutant" shall be as defined in subsection 502(6) of the CWA. Characteristics of a discharge, including dissolved oxygen, pH, or temperature, shall also be defined as pollutants if they result or may result in the potentially harmful alteration of downstream waters. "Pollution" shall be as defined in subsection 502(19) of the CWA and subsection 403.031(2), F.S. "Predominantly marine waters" shall mean surface waters in which the chloride concentration at the surface is greater than or equal to 1,500 milligrams per liter. "Secretary" shall mean the Secretary of the Florida Department of Environmental Protection. "Spill" shall mean a short-term, unpermitted discharge to surface waters, not to include sanitary sewer overflows or chronic discharges from leaking wastewater collection systems. "Stream" shall mean a free-flowing, predominantly fresh surface water in a defined channel, and includes rivers, creeks, branches, canals, freshwater sloughs, and other similar water bodies. "Stream Condition Index" shall mean a bioassessment conducted following the procedures outlined in "Development of the Stream Condition Index (SCI) for Florida," Florida Department of Environmental Protection, May, 1996, which is incorporated by reference. "Surface water" means those waters of the State upon the surface of the earth to their landward extent, whether contained in bounds created naturally or artificially or diffused. Water from natural springs shall be classified as surface water when it exits from the spring onto the earth's surface. "Total maximum daily load" (TMDL) for an impaired water body or water body segment shall mean the sum of the individual wasteload allocations for point sources and the load allocations for nonpoint sources and natural background. Prior to determining individual wasteload allocations and load allocations, the maximum amount of a pollutant that a water body or water segment can assimilate from all sources without exceeding water quality standards must first be calculated. A TMDL shall include either an implicit or explicit margin of safety and a consideration of seasonal variations. "Verified list" shall mean the list of impaired water bodies or segments for which TMDLs will be calculated, as provided in subsection 403.067(4), F.S., and which will be submitted to EPA pursuant to paragraph 303(d)(1) of the CWA. "Water quality criteria" shall mean elements of State water quality standards, expressed as constituent concentrations, levels, or narrative statements, representing a quality of water that supports the present and future most beneficial uses. "Water quality standards" shall mean standards composed of designated present and future most beneficial uses (classification of waters), the numerical and narrative criteria applied to the specific water uses or classification, the Florida antidegradation policy, and the moderating provisions (mixing zones, site-specific alternative criteria, and exemptions) contained in Chapter 62-302, F.A.C., and in Chapter 62-4, F.A.C., adopted pursuant to Chapter 403, F.S. "Water segment" shall mean a portion of a water body that the Department will assess and evaluate for purposes of determining whether a TMDL will be required. Water segments previously evaluated as part of the Department's 1998 305(b) Report are depicted in the map titled "Water Segments of Florida," which is incorporated by reference. "Waters" shall be those surface waters described in Section 403.031(13) Florida Statutes. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New There are some high salinity waters of the state that, although they do not have riverine input, nonetheless meet the definition of "estuary" found in Subsection (5) of proposed Rule 62-303.200, Florida Administrative Code, because they are "bays" or "lagoons," as those terms are used in the second sentence of Subsection (5). Rule Chapter 62-4, Florida Administrative Code, which is referenced in Subsections (6) and (23) of proposed Rule 62- 303.200, Florida Administrative Code, addresses the subject of "[p]ermits." According to Subsection (1) of Rule 62-4.210, Florida Administrative Code, "[n]o person shall construct any installation or facility which will reasonably be expected to be a source of . . . water pollution without first applying for and receiving a construction permit from the Department unless exempted by statute or Department rule." Subsection (1) of Rule 62-4.240, Florida Administrative Code, requires that "[a]ny person intending to discharge wastes into the waters of the State shall make application to the Department for an operation permit." An "operation permit" must: Specify the manner, nature, volume and frequency of the discharge permitted; Require proper operation and maintenance of any pollution abatement facility by qualified personnel in accordance with standards established by the Department; and Contain such additional conditions, requirements and restrictions as the Department deems necessary to preserve and protect the quality of the receiving waters and to ensure proper operation of the pollution control facilities. Rule 62-4.240(3), Florida Administrative Code. "An operation permit [will] be issued only if all Department requirements are met, including the provisions of Rules 62-302.300 and 62-302.700 and Rule 62-4.242, F.A.C." Rule 62-4.240(2), Florida Administrative Code. Subsection (1) of Rule 62-4.242, Florida Administrative Code, describes "[a]ntidegradation [p]ermitting [r]equirements." It provides as follows: Permits shall be issued when consistent with the antidegradation policy set forth in Rule 62-302.300 and, if applicable, Rule 62- 302.700. In determining whether a proposed discharge which results in water quality degradation is necessary or desirable under federal standards and under circumstances which are clearly in the public interest, the department shall consider and balance the following factors: Whether the proposed project is important to and is beneficial to the public health, safety, or welfare (taking into account the policies set forth in Rules 62- 302.100, 62-302.300, and, if applicable, 62- 302.700); and Whether the proposed discharge will adversely affect conservation of fish and wildlife, including endangered or threatened species, or their habitats; and Whether the proposed discharge will adversely affect the fishing or water-based recreational values or marine productivity in the vicinity of the proposed discharge; and Whether the proposed discharge is consistent with any applicable Surface Water Improvement and Management Plan that has been adopted by a Water Management District and approved by the Department. In addition to subsection (b) above, in order for a proposed discharge (other than stormwater discharges meeting the requirements of Chapter 62-25, F.A.C.), to be necessary or desirable under federal standards and under circumstances which are clearly in the public interest, the permit applicant must demonstrate that neither of the following is economically and technologically reasonable: Reuse of domestic reclaimed water. Use of other discharge locations, the use of land application, or reuse that would minimize or eliminate the need to lower water quality. Subsections (2) and (3) of Rule 62-4.242, Florida Administrative Code, prescribe "[s]tandards [a]pplying to Outstanding Florida Waters" and "[s]tandards [a]pplying to Outstanding National Resource Waters," respectively. Subsection (4) of Rule 62-4.242, Florida Administrative Code, "prescribe[s] the means by which the Department, upon the petition of a license applicant, will equitably allocate among such persons [directly discharging significant amounts of pollutants into waters which fail to meet one or more of the water quality criteria applicable to those waters] the relative levels of abatement responsibility of each for abatement of those pollutants." Subsection (1) of Rule 62-4.244, Florida Administrative Code, provides that the Department, upon application, may "allow the water quality adjacent to a point of discharge to be degraded to the extent that only the minimum conditions described in subsection 62-302.500(1), Florida Administrative Code, apply within a limited, defined region known as the mixing zone"; provided, that the "mixing zone" does not "significantly impair any of the designated uses of the receiving body of water." Subsection 502(6) of the Clean Water Act (33 U.S.C. Section 1362(6)), which is referenced in Subsection (12) of proposed Rule 62-303.200, Florida Administrative Code, provides as follows: The term "pollutant" means dredged spoil, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal, and agricultural waste discharged into water. This term does not mean (A) "sewage from vessels or a discharge incidental to the normal operation of a vessel of the Armed Forces" within the meaning of section 1322 of this title; or (B) water, gas, or other material which is injected into a well to facilitate production of oil or gas, or water derived in association with oil or gas production and disposed of in a well, if the well used either to facilitate production or for disposal purposes is approved by authority of the State in which the well is located, and if such State determines that such injection or disposal will not result in the degradation of ground or surface water resources. Subsection 502(19) of the Clean Water Act (33 U.S.C. Section 1362(19)), which is referenced in Subsection (13) of proposed Rule 62-303.200, Florida Administrative Code, provides as follows: The term "pollution" means the man-made or man-induced alteration of the chemical, physical, biological, and radiological integrity of water. In Chapter 403, Florida Statutes, the definition of "pollution" is found, not in Subsection (2) of Section 403.031, Florida Statutes, as indicated in Subsection (13) of proposed Rule 62-303.200, Florida Administrative Code, but in Subsection (7) of the statute. The "water segments" referenced in the second sentence of Subsection (24) of proposed Rule 62-303.200, Florida Administrative Code, are, for the most part, either approximately five linear miles each (in the case of streams) or approximately five square miles each (in the case of waters not in a defined channel). Subsection (13) of Section 403.031, Florida Statutes, which is referenced in Subsection (25) of proposed Rule 62- 303.200, Florida Administrative Code, provides that "'[w]aters' include, but are not limited to, rivers, lakes, streams, springs, impoundments, wetlands, and all other waters or bodies of water, including fresh, brackish, saline, tidal, surface, or underground waters." The other terms and phrases defined in proposed Rule 62-303.200, Florida Administrative Code, will be discussed, where appropriate, later in this Final Order. Part II: Overview Part II of proposed Rule Chapter 62-303, Florida Administrative Code, contains the following provisions, which describe the "planning list" of potentially impaired waters and how the list will be compiled: Proposed Rules 62-303.300, 62- 303.320, 62-303.330, 62-303.340, 62-303.350, 62-303.351, 62- 303.352, 62-303.353, 62-303.360, 62-303.370, and 62-303.380, Florida Administrative Code. Code Part II: Proposed Rule 62-303.300, Florida Administrative Proposed Rule 62-303.300, Florida Administrative Code, is entitled, "Methodology to Develop the Planning List." It provides as follows: This part establishes a methodology for developing a planning list of waters to be assessed pursuant to subsections 403.067(2) and (3), F.S. A waterbody shall be placed on the planning list if it fails to meet the minimum criteria for surface waters established in Rule 62-302.500, F.A.C.; any of its designated uses, as described in this part; or applicable water quality criteria, as described in this part. It should be noted that water quality criteria are designed to protect either aquatic life use support, which is addressed in sections 62- 303.310-353, or to protect human health, which is addressed in sections 62-303.360- 380. Waters on the list of water segments submitted to EPA in 1998 that do not meet the data sufficiency requirements for the planning list shall nevertheless be included in the state's initial planning list developed pursuant to this rule. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The second sentence of Subsection (1) of proposed Rule 62-303.300, Florida Administrative Code, incorporates the concept of "independent applicability" by providing that only one of the listed requirements need be met for a water to be placed on the "planning list." At the April 26, 2001, rule adoption hearing, the ERC initially voted to delete from proposed Rule Chapter 62-303, Florida Administrative Code, the language in Subsection (2) of proposed Rule 62-303.300, Florida Administrative Code. The ERC, however, later in the hearing, reversed itself after learning of a letter, dated April 26, 2001, that was sent to the Department by Beverly H. Bannister, the Director of the EPA's Region 4 Water Management Division. Ms. Bannister's letter read, in pertinent part, as follows: EPA expressed significant concern that, under earlier versions of the IWR [Impaired Waters Rule], waters currently identified as impaired on the State's 1998 Section 303(d) list which were determined to have "insufficient data" would be removed from the State's Section 303(d) list and also not appear on the State's planning list with its associated requirement for additional data collection. As a result of EPA concerns, the latest version of the IWR provides that waters on the current 1998 Section 303(d) list that do not meet the data sufficiency requirement of the planning list will be placed on the IWR's planning list, and sufficient data will be collected to verify the water's impairment status. In further discussions with the State regarding the EPA's concern about the 2002 Section 303(d) list, the State has committed to review all waters on the 1998 303(d) list and include all waters that meet the verification requirements of the IWR on the State's 2002 list. In addition, the State will also review all available data from 1989 to 1998 for development of a statewide planning list and include on the 2002 list any additional waters that meet the verification requirements, based on data from 1994 to 1998. (The State is unable to do a complete assessment for data gathered in 1999, 2000, and 2001 because of a national problem in the upload of data into the new Federal STORET data system.) Those waters on the 1998 303(d) list that do not meet the verification requirements will be de-listed for "good cause" and placed on the State's planning list as insufficient to verify the water's use-support status according to the methodology in the IWR. The "good cause" justification for de- listing the waters is based on several factors: 1) the requirements of the State Rule that these waters be moved to a planning list for additional data collection and assessment that will occur within a reasonable period of time; 2) a determination will be made that the waters are either impaired (and placed on the 303(d) list) or attaining its uses; and 3) the State's commitment to EPA that waters on the planning list that appeared on the State's 1998 Section 303(d) list will be monitored and assessed during the first or second rotation through the State's Watershed Management Process consistent with the schedule for TMDL development in EPA's consent decree with Earthjustice. High priority water/pollutant combinations will be monitored and assessed during the first rotation of the watershed cycle (i.e., within 5 years of 2001), and low priority water/pollutant combinations will be monitored and assessed during the second rotation of the watershed cycle (i.e., within 10 years of 2001). After this additional data collection and assessment, the water will be added to the appropriate future 303(d) list if the water is verified to be impaired, or the water will be "de- listed" based on the "good cause" justification that the water is attaining its uses. Waters on the 1998 303(d) list where sufficient data exists to demonstrate the water is meeting the IWR's planning list criteria for use support will be de-listed in the 2002 303(d) list submittal. It is EPA's view that this process will achieve the intent of the CWA and will provide sufficient documentation of the waters still requiring TMDLs by FDEP. Together with the data collection requirements found in Part III of the proposed rule chapter, Subsection (2) of proposed Rule 62-303.300, Florida Administrative Code, ensures that all waters on the Department's 1998 303(d) list (which list is referenced in Subsection (2)(c) of Section 403.067, Florida Statutes) will be assessed by the Department and that they will not be eliminated from consideration for TMDL development simply because there is not enough data to determine whether a TMDL is needed. Part II: Proposed Rule 62-303.310, Florida Administrative Code Proposed Rule 62-303.310, Florida Administrative Code, is entitled, "Evaluation of Aquatic Life Use Support." It provides as follows: A Class I, II, or III water shall be placed on the planning list for assessment of aquatic life use support (propagation and maintenance of a healthy, well-balanced population of fish and wildlife) if, based on sufficient quality and quantity of data, it: exceeds applicable aquatic life-based water quality criteria as outlined in section 62-303.320, does not meet biological assessment thresholds for its water body type as outlined in section 62-303.330, is acutely or chronically toxic as outlined in section 62-303.340, or exceeds nutrient thresholds as outlined in section 62-303.350. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New This proposed rule, like Subsection (1) of proposed Rule 62-303.300, Florida Administrative Code, incorporates the concept of "independent applicability." A water need meet only one of the four listed benchmarks to be placed on the "planning list for assessment of aquatic life use support." Each of these benchmarks is discussed at greater length in one or more of the subsequent sections of Part II of the proposed rule chapter. Part II: Proposed Rule 62-303.320, Florida Administrative Code Proposed Rule 62-303.320, Florida Administrative Code, addresses the "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" benchmark described in Subsection (1) of proposed Rule 62-303.310, Florida Administrative Code. It cites Sections 403.061 and 403.067, Florida Statutes, as its "[s]pecific [a]uthority" and Sections 403.062 and 403.067, Florida Statutes, as the "[l]aw[s] [i]mplemented" by the proposed rule. Proposed Rule 62-303.320, Florida Administrative Code, establishes a statistical method (involving "data modeling," as that term is used in Subsection (3)(b)4. of Section 403.067, Florida Statutes) for use in determining whether a water should be placed on the "planning list." It is not feasible, due to limited resources, to examine a water body at every point to determine its true overall condition. Rather, samples must be taken over time and inferences drawn from the sampling results, taking into consideration the "variability [of water quality] occurring in nature" and "that some deviations from water quality standards occur as the result of natural background conditions" (as the Legislature observed in Subsection (11) of Section 403.021, Florida Statutes). The process is, necessarily, characterized by a lack of certainty and the possibility of error. As stated in the NRC Publication: Given the finite monitoring resources, it is obvious that the number of sampling stations included in the state program will ultimately limit the number of water quality measurements that can be made at each station. Thus, in addition to the problem of defining state waters and designing the monitoring network to assess those waters, fundamental statistical issues arise concerning how to interpret limited data from individual sampling stations. Statistical inference procedures must be used on the sample data to test hypotheses about whether the actual condition in the water body meets the criterion. Thus, water quality assessment is a hypothesis-testing procedure. A statistical analysis of sample data for determining whether a water body is meeting a criterion requires the definition of a null hypothesis; for listing a water body, the null hypothesis would be that the water is not impaired. The analysis is prone to the possibility of both Type I error (a false conclusion that an unimpaired water is impaired) and Type II error (a false conclusion that an impaired water is not impaired). . . . The TAC and Department staff had extensive discussions regarding the issue of what particular type of "statistical analysis" to incorporate in the proposed rule chapter before deciding on a binomial distribution analysis. The binomial model is a time-tested nonparametric statistical method that is used where there are two possible outcomes, such as, in the case of water quality sampling, whether a water quality criterion has been exceeded or not. A parametric statistical analysis, based upon an assumption of normal distribution, which, unlike the binomial model incorporated in the proposed rule chapter, takes into account the magnitude of exceedances,36 was considered, but reasonably rejected by the TAC and Department staff because it was anticipated that, in many instances, the number of samples available to the Department would not be adequate to make the underlying distributional assumption with the requisite degree of certainty. The binomial model, which takes sample size into consideration, offers greater certainty with a limited number of samples than does the parametric statistical analysis that the TAC and Department staff rejected. Nonetheless, even in the case of the binomial model, the more samples there are, the more precise the analysis will be. Both Type I errors (false positives) and Type II errors (false negatives) decrease as sample size increases. To ensure greater analytic precision, proposed Rule 62-303.320, Florida Administrative Code, and its counterpart in Part III of the proposed rule chapter (proposed Rule 62-303.420, Florida Administrative Code) contain reasonable minimum sample size requirements (ten, with limited exceptions, for placement on the "planning list," and 20 for placement on the "verified list," which is ten more than the TAC recommended37). The NRC Publication contains the following discussion regarding the appropriateness of employing a binomial model to identify impaired waters needing TMDLs: The committee does not recommend any particular statistical method for analyzing monitoring data and for listing waters. However, one possibility is that the binomial hypothesis test could be required as a minimum and practical first step (Smith et al., 2001). The binomial method is not a significant departure from the current approach--called the raw score approach--in which the listing process treats all sample observations as binary values that either exceed the criterion or do not, and the binomial method has some important advantages. For example, one limitation of the raw score approach is that it does not account for the total number of measurements made. Clearly, 1 out of 6 measurements above the criterion is a weaker case for impairment than is 6 out of 36. The binomial hypothesis test allows one to take sample size into account. By using a statistical procedure, sample sizes can be selected and one can explicitly control and make trade-offs between error rates. (see Smith et al., 2001, and Gibbons, in press, for guidance in managing the risk of false positive and false negative errors). Several states, including Florida and Virginia, are considering or are already using the binomial hypothesis test to list impaired waters. Detailed examples of how to apply the test are beyond the scope of this document, but can be found in Smith et al. (2001) and the proposed Chapter 62-303 of the Florida Administrative Code. In a footnote, the committee added the following: The choice of Type I error rate is based on the assessor's willingness to falsely categorize a water body. It also is the case that, for any sample size, the Type II error rate decreases as the acceptable Type I error rate increases. The willingness to make either kind of mistake will depend on the consequences of the resulting action (more monitoring, costs to do a TMDL plan, costs to implement controls, possible health risk) and who bears the cost (public budget, private parties, etc.). The magnitude and burden of a Type I versus Type II error depend on the statement of the null hypothesis and on the sample size. When choosing a Type I error rate, the assessor may want to explicitly consider these determinants of error rates. The TAC recommended a Type I error rate of five percent (or, stated differently, a confidence level of 95 percent) be used in making listing decisions.38 Department staff responsible for drafting the proposed rule chapter, believing that, as a matter of policy, a 95 percent confidence level was too high and that a higher Type I error rate should be tolerated in order to reduce Type II error, reasonably settled on an 80 percent confidence level for placement on the "planning list" and a 90 percent confidence level for placement on the "verified list." Scientific studies generally do not employ a confidence level below 80 percent. A 50 percent confidence level is "comparable to flipping a coin." Use of the binomial model to determine impairment for purposes of TMDL development (based upon exceedances of water quality criteria) further requires the selection of a fixed "exceedance frequency" representing an acceptable rate of violation beneath which a water segment will not be considered impaired. A permissible "exceedance frequency" accounts for the natural variability of water quality and the uncertainty that the measurements taken are representative of the overall condition of the water segment sampled. The Department, pursuant to EPA guidance, has historically used a ten percent "exceedance frequency" for purposes of identifying, in its 305(b) Report, waters not meeting their designated uses. The TAC and Department staff agreed that a ten percent "exceedance frequency" should likewise be incorporated in the proposed rule chapter. The NRC Publication contains the following discussion regarding "exceedance frequencies" in general and a ten percent "exceedance frequency" in particular: Whether the binomial or the raw score approach is used, there must be a decision on an acceptable frequency of violation for the numeric criterion, which can range from 0 percent of the time to some positive number. Under the current EPA approach, 10 percent of the sample measurements of a given pollutant made at a station may exceed the applicable criterion without having to list the surrounding waterbody. The choice of 10 percent is meant to allow for uncertainty in the decision process. Unfortunately, simply setting an upper bound on the percentage of measurements at a station that may violate a standard provides insufficient information to properly deal with the uncertainty concerning impairment. The choice of acceptable frequency of violation is also supposed to be related to whether the designated use will be compromised, which is clearly dependent on the pollutant and on waterbody characteristics such as flow rate. A determination of 10 percent cannot be expected to apply to all water quality situations. In fact, it is inconsistent with federal water quality criteria for toxics that specify allowable violation frequencies of either one day in three years, four consecutive days in three years, or 30 consecutive days in three years (which are all less than 10 percent). Embedded in the EPA raw score approach is an implication that 10 percent is an acceptable violation rate, which it may not be in certain circumstances. Nonetheless, as the chairman of the committee that produced the NRC Publication, Dr. Kenneth Reckhow, testified at the final hearing in these consolidated cases when asked whether he "believe[d] that a determination of ten percent exceedance [frequency] cannot be expected to apply to all water quality situations": the "notion of one size fits all is . . . a pragmatic approach to the limits of what can be done in a regulatory environment." Dr. Reckhow, during his testimony, declined to "endorse[] as a scientist" the use of an "exceedance frequency" of ten percent (as opposed to some other "particular level"),39 but he stated his opinion (which the undersigned accepts) that "it is important to select a level, and from a science perspective it would be useful to see states employ a level like that or levels roughly around that point and see how effectively they have worked in terms of achieving the goal of meeting designated uses." Subsection (1) of proposed Rule 62-303.320, Florida Administrative Code, sets forth in tabular form, by sample size (from ten samples to 500 samples), the minimum number of exceedances needed for placement on the "planning list." It provides as follows: Water segments shall be placed on the planning list if, using objective and credible data, as defined by the requirements specified in this section, the number of exceedances of an applicable water quality criterion due to pollutant discharges is greater than or equal to the number listed in Table 1 for the given sample size. This table provides the number of exceedances that indicate a minimum of 10% exceedance frequency with a minimum of an 80% confidence level using a binomial distribution. Table 1: Planning List Minimum number of measured exceedances needed to put a water on the Planning list with at least 80% confidence that the actual exceedance rate is greater than or equal to ten percent. Sample Are listed if they Sizes have at least this # of exceedances From To 10 15 3 16 23 4 24 31 5 32 39 6 40 47 7 48 56 8 57 65 9 66 73 10 74 82 11 83 91 12 92 100 13 101 109 14 110 118 15 119 126 16 127 136 17 137 145 18 146 154 19 155 163 20 164 172 21 173 181 22 182 190 23 191 199 24 200 208 25 209 218 26 219 227 27 228 236 28 237 245 29 246 255 30 256 264 31 265 273 32 274 282 33 283 292 34 293 301 35 302 310 36 311 320 37 321 329 38 330 338 39 339 348 40 349 357 41 358 367 42 368 376 43 377 385 44 386 395 45 396 404 46 405 414 47 415 423 48 424 432 49 433 442 50 443 451 51 452 461 52 462 470 53 471 480 54 481 489 55 490 499 56 500 500 57 The "calculations [reflected in Table 1] are correct." Subsection (2) of proposed Rule 62-303.320, Florida Administrative Code, provides as follows: The U.S. Environmental Protection Agency's Storage and Retrieval (STORET) database shall be the primary source of data used for determining water quality criteria exceedances. As required by rule 62- 40.540(3), F.A.C., the Department, other state agencies, the Water Management Districts, and local governments collecting surface water quality data in Florida shall enter the data into STORET within one year of collection. Other sampling entities that want to ensure their data will be considered for evaluation should ensure their data are entered into STORET. The Department shall consider data submitted to the Department from other sources and databases if the data meet the sufficiency and data quality requirements of this section. STORET is a "centralized data repository" maintained by the EPA. It contains publicly available water quality data, contributed by state agencies and others, on waters throughout the nation. Subsection (3) of Rule 62-40.540, Florida Administrative Code, which is referenced in Subsection (2) of proposed Rule 62-303.320, Florida Administrative Code, provides that "[t]he U.S. Environmental Protection Agency water quality data base (STORET) shall be the central repository of the state's water quality data" and that"[a]ll appropriate water quality data collected by the Department, Districts, local governments, and state agencies shall be placed in the STORET system within one year of collection." At the end of 1998, STORET underwent a major overhaul. It is "now more accommodating of meta data," which is auxiliary information about the underlying data. As Ms. Bannister indicated in her April 26, 2001, letter to the Department, there was a "problem in the upload of data into the new Federal STORET data system." This new version of STORET is still not "very user-friendly." Subsection (2) of proposed Rule 62-303.320, Florida Administrative Code, however, while it strongly encourages the entry of data into STORET, does not require that data be entered into STORET to be considered by the Department in determining whether there have been the requisite number of exceedances for placement on the "planning list," as the last sentence of Subsection (2) makes abundantly clear. Subsection (3) of proposed Rule 62-303.320, Florida Administrative Code, imposes reasonable age-related restrictions on what data can be used to determine whether a water should be placed on the "planning list" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria." It provides as follows: When determining water quality criteria exceedances, data older than ten years shall not be used to develop planning lists. Further, more recent data shall take precedence over older data if: the newer data indicate a change in water quality and this change is related to changes in pollutant loading to the watershed or improved pollution control mechanisms in the watershed contributing to the assessed area, or the Department determines that the older data do not meet the data quality requirements of this section or are no longer representative of the water quality of the segment. The Department shall note for the record that the older data were excluded and provide details about why the older data were excluded. These provisions are reasonably designed to increase the likelihood that the decision to place a water on the "planning list" will be based upon data representative of the water's current conditions. While the data that will be excluded from consideration by Subsection (3) of proposed Rule 62-303.320, Florida Administrative Code, may be objective and credible data, such data merely reflects what the conditions of the water in question were at the time the samples yielding the data were collected. Declining to rely on this data because it is too old to be a reliable indicator of current conditions is not unreasonable. The TAC recommended that listing decisions be based on data no older than five years.40 Department staff, however, believed that, for purposes of compiling a "planning list," a ten-year cut-off was more appropriate. The binomial model is predicated on independent sampling. Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, addresses "in a very straightforward, simple, but reasonable way, the notion of spatial independence and temporal independence." It provides as follows: To be assessed for water quality criteria exceedances using Table 1, a water segment shall have a minimum of ten, temporally independent samples for the ten year period. To be treated as an independent sample, samples from a given station shall be at least one week apart. Samples collected at the same location less than seven days apart shall be considered as one sample, with the median value used to represent the sampling period. However, if any of the individual values exceed acutely toxic levels, then the worst case value shall be used to represent the sampling period. The worst case value is the minimum value for dissolved oxygen, both the minimum and maximum for pH, or the maximum value for other parameters. However, when data are available from diel or depth profile studies, the lower tenth percentile value shall be used to represent worst case conditions. For the purposes of this chapter, samples collected within 200 meters of each other will be considered the same station or location, unless there is a tributary, an outfall, or significant change in the hydrography of the water. Data from different stations within a water segment shall be treated as separate samples even if collected at the same time. However, there shall be at least five independent sampling events during the ten year assessment period, with at least one sampling event conducted in three of the four seasons of the calendar year. For the purposes of this chapter, the four seasons shall be January 1 through March 31, April 1 through June 30, July 1 through September 30, and October 1 through December 31. States may set their "[a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" at either acutely toxic levels or chronically toxic levels. The EPA, based on data from toxicity tests, has determined what these acutely toxic levels and chronically toxic levels should be, and it has provided its recommendations to the states for their use in setting appropriate water quality criteria. With one exception (involving silver in predominantly marine waters), the Department, in Rule Chapter 62-302, Florida Administrative Code, has opted to establish "[a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" at chronically toxic levels, rather than at acutely toxic levels, because chronic-toxicity-based criteria are, in the Department's view, "more protective." Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, will require the Department, under certain circumstances, to determine whether acutely toxic levels of parameters listed in Rule Chapter 62-302, Florida Administrative Code (other than silver in predominantly marine waters) have been exceeded. Neither the Department's existing rules, nor the proposed rule chapter, specifies what these levels are. In making this determination, the Department intends to use the acutely toxic levels recommended by the EPA. The last two sentences of Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, address "seasonal . . . variations," as required by Subsection (3)(b)1. of Section 403.067, Florida Statutes, and do so in a manner consistent with the TAC's recommendation on the matter. As Subsection (3)(b)1. of Section 403.067, Florida Statutes, suggests, water quality may vary from season to season. Such variations tend to be more pronounced in the northern part of the state than in South Florida in the case of certain parameters, such as dissolved oxygen, which is usually "at its critical condition" during the warmer months. While certain types of exceedances may be more likely to occur during a particular season or seasons of the year, exceedances may occur at any time during the year. Department staff, as recommended by the TAC, included the last two sentences in Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, in a reasonable effort to avoid a situation where a listing decision would be based upon skewed data (provided by persons "with an agenda") reflecting only isolated instances of worst or best case conditions, as opposed to "data . . . spread throughout the year as much as possible." Data from each of the four seasons of the calendar year were not required "because then some data sets might be excluded just because they missed a quarterly sample," an outcome the TAC and Department staff considered to be undesirable because they "wanted to be all-inclusive and . . . capture all waters that in fact might even potentially be impaired" on the "planning list." Notwithstanding the "three out of four seasons" data sufficiency requirement of Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, because the proposed rule establishes an "exceedance frequency" threshold of ten percent, a water may qualify for placement on the "planning list" under the proposed rule even though all of the exceedances evidenced by the data in the Department's possession (covering at least three of the four seasons of the year) occurred in the one season when conditions are typically at their worst for the water. (If there were other exceedances, they would not be excluded from consideration under the proposed rule simply because they occurred during a time of year when exceedances are atypical.) The "three out of four seasons" requirement does not completely protect against persons "with an agenda" obtaining the result they want by providing the Department skewed data, but, as Dr. Reckhow testified at the final hearing, it would be difficult, if not impossible, for the Department to devise a rule which provides for Department consideration of data submitted by members of the public and, at the same time, completely "prevent[s] someone who is clever [enough] from contriving the analysis." As Dr. Reckhow pointed out, to counteract the data submissions of such a person, those who believe that the data is not truly representative of the overall condition of the water can "collect their own data and make the[ir] case" to the Department. Subsection (5) of proposed Rule 62-303.320, Florida Administrative Code, which reads as follows, provides two exceptions to the data sufficiency requirements of Subsection of the proposed rule: Notwithstanding the requirements of paragraph (4), water segments shall be included on the planning list if: there are less than ten samples for the segment, but there are three or more temporally independent exceedances of an applicable water quality criterion, or there are more than one exceedance of an acute toxicity-based water quality criterion in any three year period. The "three or more exceedances" exception (found in Subsection (5)(a) of proposed Rule 62-303.320, Florida Administrative Code) to the proposed rule's minimum sample size requirement of ten was not something that the "TAC ever voted on." It was included in the proposed rule by Department staff at the request of Petitioners. As noted above, the only "acute toxicity-based water quality criterion" in Rule Chapter 62-302, Florida Administrative Code, is the criterion for silver in predominantly marine waters. Accordingly, Subsection (5)(b) of proposed Rule 62-330.320, Florida Administrative Code, applies only where that criterion has been exceeded (more than once in a three year period). Subsection (6) of proposed Rule 62-330.320, Florida Administrative Code, provides that certain data (described therein) will be excluded from consideration by the Department in determining whether a water should be placed on the "planning list" pursuant to the proposed rule. It reads as follows: Values that exceed possible physical or chemical measurement constraints (pH greater than 14, for example) or that represent data transcription errors shall be excluded from the assessment. Outliers identified through statistical procedures shall be evaluated to determine whether they represent valid measures of water quality. If the Department determines that they are not valid, they shall be excluded from the assessment. However, the Department shall note for the record that the data were excluded and explain why they were excluded. The exclusion of the data described in Subsection (6) of proposed Rule 62-330.320, Florida Administrative Code, is entirely appropriate. Indeed, it would be unreasonable for the Department to consider such data. Earlier versions of Subsection (6) of proposed Rule 62-330.320, Florida Administrative Code, automatically excluded outliers from consideration. The ERC-adopted version, however, provides that outliers will first be identified41 and then examined and, only if they are determined by the Department, using its "best professional judgment," not to be "valid measures of water quality," will they be excluded from consideration. (Values, although extreme, may nonetheless "represent valid measures of water quality."). Subsection (7) of proposed Rule 62-303.320, Florida Administrative Code, which provides as follows, addresses "[q]uality assurance and [q]uality control protocols," as those terms are used in Subsection (3)(b)3. of Section 403.067, Florida Statutes: The Department shall consider all readily available water quality data. However, to be used to determine water quality exceedances, data shall be collected and analyzed in accordance with Chapter 62-160, F.A.C., and for data collected after one year from the effective date of this rule, the sampling agency must provide to the Department, either directly or through entry into STORET, all of the data quality assessment elements listed in Table 2 of the Department's Guidance Document "Data Quality Assessment Elements for Identification of Impaired Surface Waters" (DEP EAS 01-01, April 2001), which is incorporated by reference. Rule Chapter 62-160, Florida Administrative Code, which is referenced in Subsection (7)(a) of proposed Rule 62- 303.320, Florida Administrative Code, contains "[q]uality assurance requirements" that, with certain limited exceptions, "apply to all programs, projects, studies, or other activities which are required by the Department, and which involve the measurement, use, or submission of environmental data or reports to the Department." Rule 62-160.110, Florida Administrative Code. Adherence to quality assurance requirements such as those in Rule Chapter 62-160, Florida Administrative Code, is essential to obtaining data that is objective and credible. Compliance with these requirements makes it less likely that sampling results will be inaccurate. DEP EAS 01-01, April 2001, which is incorporated by reference in Subsection (7)(b) of proposed Rule 62-303.320, Florida Administrative Code, provides as follows: The Department relies on environmental data from a variety of sources to carry out its mission. Those data must satisfy the needs for which they are collected, comply with applicable standards, specifications and statutory requirements, and reflect a consideration of cost and economics. Careful project planning and routine project and data reviews, are essential to ensure that the data collected are relevant to the decisions being made. Many aspects of a project affect data quality. Sampling design, selection of parameters, sampling technique, analytical methodologies and data management activities are a few such aspects, whether the data are being collected for a compliance program, or for research activities. The level of quality of each of those elements will affect the final management decisions that are based on a project's outcome. Data quality assessment is one activity that is instrumental in ensuring that data collected are relevant and appropriate for the decisions being made. Depending on the needs of the project, the intended use of the final data and the degree of confidence required in the quality of the results, data quality assessment can be conducted at many levels. For the purposes of identification of impaired surface waters, the level of data quality assessment to be conducted (Table 1) requires providing the appropriate data elements (Table 2). If the data and applicable data elements are in an electronic format, data quality assessments can be performed automatically on large volumes of data using software tools, without significant impact to staffing. Department programs can realize significant improvement in environmental protection without additional process using these types of review routinely. Table 1: Recommended Quality Assessment Checks Quality Test Review to determine if analyses were conducted within holding times Review for qualifiers indicative of problems Screen comments for keywords indicative of problems Review laboratory certification status for particular analyte at the time analysis was performed Review data to determine if parts are significantly greater than the whole (e.g., ortho-P>total phosphorous, NH3>TKN, dissolved metal>total metal) Screen data for realistic ranges (e.g., is pH<14?) Review detection limits and quantification limits against Department criteria and program action levels to ensure adequate sensitivity Review for blank contamination Table 2: Data Elements Related to Quality Assessment ID Element Description Sample ID Unique Field Sample Identifier Parameter Name Name of parameter measured Analytical Result Result for the analytical measurement 4. Result Units Units in which measurement is reported DEP Qualifiers Qualifier code describing specific QA conditions as reported by the data provider Result Comments Free-form text where data provider relates information they consider relevant to the result Date (Time) of Sample Collection Date (Time) of Sample Preparations Date (Time) of Sample Analysis Analytical Method Method number used for sample analysis Prep Method Method number used for sample preparation prior to analysis Sample Matrix Was the sample a surface water or groundwater sample, a fresh- water or saltwater sample DOH Certificate Certificate number Number/ issued by the Laboratory ID Department of Health's lab certification program Preservatives Description of Added preservatives added to the sample after collection MDL Method detection limit for a particular result PQL Practical quantification limit for a particular result Sample Type Field identifying sample nature (e.g., environmental sample, trip blank, field blank, matrix spike, etc. Batch ID Unambiguous reference linking samples prepped or analyzed together (e.g., trip preparation, analysis Ids) 19 Field, Lab Blank Results Results for field/laboratory blank analysis required by the methods 20 CAS Number CAS registry number of the parameter measured Having the auxiliary information listed in Table 2 of DEP EAS 01-01 will help the Department evaluate the data that it receives from outside sources to determine whether the data are usable (for purposes of implementing the provisions of the proposed rule chapter). Subsection (8) of proposed Rule 62-303.320, Florida Administrative Code, also addresses "[q]uality assurance and [q]uality control protocols." It reads as follows: To be used to determine exceedances of metals criteria, surface water data for mercury shall be collected and analyzed using clean sampling and analytical techniques, and the corresponding hardness value shall be required to determine exceedances of freshwater metals criteria that are hardness dependent, and if the ambient hardness value is less than 25 mg/L as CaCO3, then a hardness value of 25 will be used to calculate the criteria. If data are not used due to sampling or analytical techniques or because hardness data were not available, the Department shall note for the record that data were excluded and explain why they were excluded. The "clean sampling and analytical techniques" referenced in Subsection (8)(a) of proposed Rule 62-303.320, Florida Administrative Code, are, as noted above, defined in Subsection (2) of proposed Rule 62-303.200, Florida Administrative Code, as "those applicable field sampling procedures and analytical methods" permitted by the EPA's "Method 1669." "Method 1669" is a "performance-based," "guidance document" that, as its "Introduction" and introductory "Note," which read, in pertinent part, as follows, reveal, allows for the use of procedures other than those specifically described therein for "[s]ampling [a]mbient [w]ater for [t]race [m]etals at EPA [w]ater [q]uality [c]riteria [l]evels": . . . . In developing these methods, EPA found that one of the greatest difficulties in measuring pollutants at these levels was precluding sample contamination during collection, transport, and analysis. The degree of difficulty, however, is dependent on the metal and site-specific conditions. This method, therefore, is designed to provide the level of protection necessary to preclude contamination in nearly all situations. It is also designed to provide the protection necessary to produce reliable results at the lowest possible water quality criteria published by EPA. In recognition of the variety of situations to which this method may be applied, and in recognition of continuing technological advances, the method is performance-based. Alternative procedures may be used, so long as those procedures are demonstrated to yield reliable results. . . . Note: This document is intended as guidance only. Use of the terms "must," "may," and "should" are included to mean that the EPA believes that these procedures must, may, or should be followed in order to produce the desired results when using this guidance. In addition, the guidance is intended to be performance-based, in that the use of less stringent procedures may be used as long as neither samples nor blanks are contaminated when following those modified procedures. Because the only way to measure the performance of the modified procedures is through the collection and analysis of uncontaminated blank samples in accordance with this guidance and the referenced methods, it is highly recommended that any modification be thoroughly evaluated and demonstrated to be effective before field samples are collected. Subsection (8)(a) of proposed Rule 62-303.320, Florida Administrative Code, requires that "Method 1669"- permitted procedures be used only where a water is being tested to determine if it exceeds the criterion for mercury (.012 micrograms per liter in the case of Class I waters and Class III freshwaters, and .025 micrograms per liter in the case of Class II waters and Class III marine waters). Use of these procedures is necessary to avoid the sample contamination (from, among other things, standard lab bottles, hair, dandruff, atmospheric fallout, and pieces of cotton from clothing) which commonly occurs when standard, non- "Method 1669"-permitted techniques are used. Because "the criteria [for mercury are] so low" and may be exceeded due solely to such contamination, it is essential to employ "Method 1669"-permitted techniques in order to obtain results that are reliable and meaningful. The "Method 1669"-permitted techniques are approximately five times more costly to employ than standard techniques and the Department's laboratory is the only laboratory in the state (with the possible exception of a laboratory at Florida International University) able to provide "clean sampling and analytical techniques" to measure mercury levels in surface water. Nonetheless, as Timothy Fitzpatrick, the Department's chief chemist, testified at the final hearing in these consolidated cases: [I]f you want to measure methyl mercury or total mercury in surface water, you have to use clean techniques or you're measuring noise. And the whole purpose behind using clean techniques is to do sound science and to have confidence in the number. It's not to determine whether or not you're throwing out a body of data. It's to be able to get numbers that make sense. And there's no point in having a database full of information that's virtually worthless because it contains noise, analytical noise. As Subsection (8)(b) of proposed Rule 62-303.320, Florida Administrative Code, suggests, there are certain "metals for which the actual water quality criterion itself changes as the hardness [of the water, measured in milligrams per liter calcium carbonate] changes." Criteria for these metals are set (in the table contained in Rule 62-302.530, Florida Administrative Code) at higher levels for high hardness waters than for low hardness waters. To know which criterion applies in a particular case, the Department needs to know the hardness of the water sampled. Subsection (9) of proposed Rule 62-303.320, Florida Administrative Code, guards against reliance on data that, due to the use of inappropriate methods, may fail to reveal exceedances that actually exist. It provides as follows: Surface water data with values below the applicable practical quantification limit (PQL) or method detection limit (MDL) shall be assessed in accordance with Rules 62- 4.246(6)(b)-(d) and (8), F.A.C. If sampling entities want to ensure that their data will be considered for evaluation, they should review the Department's list of approved MDLs and PQLs developed pursuant to Rule 62-4.246, F.A.C., and, if available, use approved analytical methods with MDLs below the applicable water quality criteria. If there are no approved methods with MDLs below a criterion, then the method with the lowest MDL should be used. Analytical results listed as below detection or below the MDL shall not be used for developing planning lists if the MDL was above the criteria and there were, at the time of sample collection, approved analytical methods with MDLs below the criteria on the Department's list of approved MDLs and PQLs. If appropriate analytical methods were used, then data with values below the applicable MDL will be deemed to meet the applicable water quality criterion and data with values between the MDL and PQL will be deemed to be equal to the MDL. Subsections (6)(b) through (d) and (8) of Rule 62- 4.246, Florida Administrative Code, provide as follows: All results submitted to the Department for permit applications and monitoring shall be reported as follows: The approved analytical method and corresponding Department-established MDL and PQL levels shall be reported for each pollutant. The MDLs and PQLs incorporated in the permit shall constitute the minimum reporting levels for each parameter for the life of the permit. The Department shall not accept results for which the laboratory's MDLs or PQLs are greater than those incorporated in the permit. All results with laboratory MDLs and PQLs lower than those established in the permit shall be reported to the Department. Unless otherwise specified, all subsequent references to MDL and PQL pertain to the MDLs and PQLs incorporated in the permit. Results greater than or equal to the PQL shall be reported as the measured quantity. Results less than the PQL and greater than or equal to the MDL shall be reported as less than the PQL and deemed to be equal to the MDL. Results less than the MDL shall be reported as less than the MDL. * * * (8) The presence of toxicity (as established through biomonitoring), data from analysis of plant or animal tissue, contamination of sediment in the vicinity of the installation, intermittent violations of effluent limits or water quality standards, or other similar kinds of evidence reasonably related to the installation may indicate that a pollutant in the effluent may cause or contribute to violations of water quality criteria. If there is such evidence of possible water quality violations, then (unless the permittee has complied with subsection (9) below) in reviewing reports and applications to establish permit conditions and determine compliance with permits and water quality criteria, the Department shall treat any result less than the MDL of the method required in the permit or the method as required under subsection (10) below or any lower MDL reported by the permittee's laboratory as being one half the MDL (if the criterion equals or exceeds the MDL) or one half of the criterion (if the criterion is less than the MDL), for any pollutant. Without the permission of the applicant, the Department shall not use any values determined under this subsection or subsection (9) below for results obtained under a MDL superseded later by a lower MDL. The final subsection of proposed Rule 62-303.320, Florida Administrative Code, Subsection (10), provides as follows: It should be noted that the data requirements of this rule constitute the minimum data set needed to assess a water segment for impairment. Agencies or groups designing monitoring networks are encouraged to consult with the Department to determine the sample design appropriate for their specific monitoring goals. Proposed Rule 62-303.320, Florida Administrative Code, establishes a relatively "rigid" framework, based upon statistical analysis of data, with little room for the exercise of "best professional judgment," for determining whether a water qualifies for placement on the "planning list." There are advantages to taking such a "cookbook" approach. It promotes administrative efficiency and statewide uniformity in listing decisions. Furthermore, as Dr. Reckhow pointed out during his testimony, it lets the public know "how a [listing] decision is arrived at" and therefore "makes it easier for the public to get engaged and criticize the outcome." Such "rigidity," however, comes at a price, as Dr. Reckhow acknowledged, inasmuch as observations and conclusions (based upon those observations) made by the "experienced biologist who really understands the system . . . get[] lost." While proposed Rule 62-303.320, Florida Administrative Code, may rightfully be characterized as a "rigid statistical approach," it must be remembered that, in the subsequent portions of Part II of the proposed rule chapter, the Department provides other ways for a water to qualify for placement on the "planning list." A discussion of these alternatives follows. Code Part II: Proposed Rule 62-303.330, Florida Administrative Proposed Rule 62-303.330, Florida Administrative Code, is entitled, "Biological Assessment." As noted in Subsection (2) of proposed Rule 62-303.310, Florida Administrative Code, it "outline[s]" the requirements that must be met for a water to qualify for placement on the "planning list" based upon a failure to "meet biological assessment thresholds for its water body type." It lists Sections 403.061 and 403.067, Florida Statutes, as its "[s]pecific [a]uthority" and Sections 403.062 and 403.067, Florida Statutes, as the "[l]aw [i]mplemented." A "[b]iological [a]ssessment" provides more information about the overall ability of a water to sustain aquatic life than does the "data used for determining water quality exceedances" referenced in Subsection (2) of proposed Rule 62-303.320, Florida Administrative Code. This is because "[b]iological [a]ssessment[s]," as is noted in the NRC Publication, "integrate the effects of multiple stressors over time and space." As Mr. Joyner pointed out in his testimony, a "[b]iological [a]ssessment" is "more than just a snapshot like a water quality sample is of the current water quality [at the particular location sampled]." Unlike proposed Rule 62-303.320, Florida Administrative Code, proposed Rule 62-303.330, Florida Administrative Code, deals with "biological criteria," not "numerical criteri[a]," as those terms are used in Subsection (3)(c) of Section 403.067, Florida Statutes, and the method it establishes for determining "planning list" eligibility does not involve statistical analysis. Subsection (1) of proposed Rule 62-303.330, Florida Administrative Code, provides that "[b]iological data must meet the requirements of paragraphs (3) and (7) in section 62- 303.320," Florida Administrative Code, which, as noted above, impose age ("paragraph" (3)) and quality assurance/quality control and data submission ("paragraph" (7)) restrictions on the use of data. While the "biological component of STORET is not . . . usable" at this time and the biological database maintained by the Department "is not a database where members of the public can input data," pursuant to "paragraph" (7)(b) of proposed Rule 62-303.320, Florida Administrative Code, data collected by someone outside the Department that is not entered into either STORET or the Department's own biological database may still be considered by the Department if it is provided "directly" to the Department. Inasmuch as "[b]iological [a]ssessment[s]" reflect the "effects of multiple stressors over time and space," failed assessments are no more likely during one particular time of the year than another. Consequently, there is no need to limit the time of year in which "[b]iological [a]ssessment[s]" may be conducted. The first sentence of Subsection (2) of proposed Rule 62-303.330, Florida Administrative Code, provides that "[b]ioassessments used to assess streams and lakes under this rule shall include BioRecons, Stream Condition Indices (SCIs), and the benthic macroinvertebrate component of the Lake Condition Index (LCI), which only applies to clear lakes with a color less than 40 platinum cobalt units." The BioRecon and SCI, as those terms are defined in Subsections (1) and (18), respectively, of proposed Rule 62- 303.200, Florida Administrative Code, are rapid bioassessment protocols for streams developed by the Department. They are "similar to the original rapid bioassessment protocols that were designed by the U.S. EPA in [19]89." Conducting a BioRecon or SCI requires the deployment of a Standard D frame dip net approximately one and a half meters in length (including its handle), which is used to obtain samples of the best available habitat that can be reached. The samples are obtained by taking "sweeps" with the one and a half meter long dip net. Both wadable and non-wadable streams can be, and have been, sampled using this method prescribed by the BioRecon and SCI, although sampling is "more challenging when the water body is deeper than waist deep." In these cases, a boat is used to navigate to the areas where sampling will occur. The sampling "methods are identical regardless of the depth of the water." The BioRecon and SCI both include an assessment of the health of the habitat sampled, including the extent of habitat smothering from sediments and bank instability. The purpose of such an assessment is "to ascertain alteration of the physical habitat structure critical to maintenance of a healthy biological condition." Like all bioassessment protocols, the BioRecon and SCI employ "reasonable thresholds" of community health (arrived at by sampling "reference sites," which are the least affected and impacted sites in the state) against which the health of the sampled habitat is measured. Impairment is determined by the sampled habitat's departure from these "reasonable thresholds" (which represent expected or "reference" conditions). The BioRecon is newer, quicker and less comprehensive than the SCI. Only four sweeps of habitat are taken for the BioRecon, compared to 20 sweeps for the SCI. Furthermore, the BioRecon takes into consideration only three measures of community health (taxa richness, Ephemeroptera/ Plecoptera/Tricoptera Index, and Florida Index), whereas the SCI takes into account four additional measures of community health. For these reasons, the BioRecon is considered a "screening version" of the SCI. Like the BioRecon and the SCI, the LCI is a "comparative index." Conditions at the sampled site are compared to those at "reference sites" to determine the health of the aquatic community at the sampled site. Samples for the LCI are taken from the sublittoral zone of the targeted lake,42 which is divided into twelve segments. Using a petite PONAR or Ekman sampler dredge, a sample is collected from each of the twelve segments. The twelve samples are composited into a single, larger sample, which is then examined to determine what organisms it contains. The results of such examination are considered in light of six measures of community health: Total taxa, EOT taxa, percent EOT, percent Diptera, the Shannon-Weiner Diversity Index, and the Hulbert Index. Lakes larger than 1,000 acres are divided into two subbasins or into quadrants (as appropriate), and each subbasin or quadrant is sampled separately, as if it were a separate site. It is essential that persons conducting BioRecons, SCIs, and LCIs know the correct sampling techniques to use and have the requisite amount of taxonomic knowledge to identify the organisms that may be found in the samples collected. For this reason, a second sentence was included in Subsection (2) of proposed Rule 62-303.330, Florida Administrative Code, which reads as follows: Because these bioassessment procedures require specific training and expertise, persons conducting the bioassessments must comply with the quality assurance requirements of Chapter 62-160, F.A.C., attend at least eight hours of Department sanctioned field training, and pass a Department sanctioned field audit that verifies the sampler follows the applicable SOPs in Chapter 62-160, F.A.C., before their bioassessment data will be considered valid for use under this rule. The Department has developed SOPs for BioRecons, SCIs, and LCIs, which are followed by Department personnel who conduct these bioassessments. The Department is in the process of engaging in rulemaking to incorporate these SOPs in Rule Chapter 62-160, Florida Administrative Code, but had not yet, as of the time of the final hearing in these consolidated cases, completed this task.43 Subsection (3) of proposed Rule 62-303.330, Florida Administrative Code, provides as follows: Water segments with at least one failed bioassessment or one failure of the biological integrity standard, Rule 62- 302.530(11), shall be included on the planning list for assessment of aquatic life use support. In streams, the bioassessment can be an SCI or a BioRecon. Failure of a bioassessment for streams consists of a "poor" or "very poor" rating on the Stream Condition Index, or not meeting the minimum thresholds established for all three metrics (taxa richness, Ephemeroptera/Plecoptera/Tricoptera Index, and Florida Index) on the BioRecon. Failure for lakes consists of a "poor" or "very poor" rating on the Lake Condition Index. Subsection (11) of Rule 62-302.530, Florida Administrative Code, prescribes the following "biological integrity standard[s]" for Class I, II and III waters: Class I The Index for benthic macroinvertebrates shall not be reduced to less than 75% of background levels as measured using organisms retained by a U.S. Standard No. 30 sieve and collected and composited from a minimum of three Hester-Dendy type artificial substrate samplers of 0.10 to 0.15m2 area each, incubated for a period of four weeks. Class II The Index for benthic macroinvertebrates shall not be reduced to less than 75% of established background levels as measured using organisms retained by a U.S. Standard No. 30 sieve and collected and composited from a minimum of three natural substrate samples, taken with Ponar type samplers with minimum sampling area of 2252. Class III: Fresh The Index for benthic macroinvertebrates shall not be reduced to less than 75% of established background levels as measured using organisms retained by a U.S. Standard No. 30 sieve and collected and composited from a minimum of three Hester-Dendy type artificial substrate samplers of 0.10 to 0.15m2 area each, incubated for a period of four weeks. Class III: Marine The Index for benthic macroinvertebrates shall not be reduced to less than 75% of established background levels as measured using organisms retained by a U.S. Standard No. 30 sieve and collected and composited from a minimum of three natural substrate samples, taken with Ponar type samplers with minimum sampling area of 2252. The "Index" referred to in these standards is the Shannon-Weaver Diversity Index. Subsection (4) of proposed Rule 62-303.330, Florida Administrative Code, which reads as follows, allows the Department to rely upon "information relevant to the biological integrity of the water," other than a failure of a BioRecon, SCI, or LCI or a failure of the "biological integrity standard" set forth in Subsection (11) of Rule 62-302.530, Florida Administrative Code, to place a water on the "planning list" where the Department determines, exercising its "best professional judgment," that such "information" reveals that "aquatic life use support has [not] been maintained": Other information relevant to the biological integrity of the water segment, including information about alterations in the type, nature, or function of a water, shall also be considered when determining whether aquatic life use support has been maintained. The "other information" that would warrant placement on the "planning list" is not specified in Subsection (4) because, as Mr. Frydenborg testified at the final hearing, "[t]he possibilities are so vast." Proposed Rule 62-303.330, Florida Administrative Code, does not make mention of any rapid type of bioassessment for estuaries, the failure of which will lead to placement of a water on the "planning list," for the simple reason that the Department has yet to develop such a bioassessment.44 Estuaries, however, may qualify for "planning list" placement under proposed Rule 62-303.330, Florida Administrative Code, based upon "one failure of the biological integrity standard," pursuant to Subsection (3) of the proposed rule,45 or based upon "other information," pursuant to Subsection (4) of the proposed rule (which may include "information" regarding seagrasses, aquatic macrophytes, or algae communities). Part II: Proposed Rule 62-303.340, Florida Administrative Code Proposed Rule 62-303.340, Florida Administrative Code, is entitled, "Toxicity," and, as noted in Subsection (3) of proposed Rule 62-303.310, Florida Administrative Code, "outline[s]" the requirements that must be met for a water to qualify for placement on the "planning list" based upon it being "acutely or chronically toxic." These requirements, like those found in proposed Rule 62-303.330, Florida Administrative Code, relating to "[b]iological [a]ssessment[s]," are not statistically-based. They are as follows: All toxicity tests used to place a water segment on a planning list shall be based on surface water samples in the receiving water body and shall be conducted and evaluated in accordance with Chapter 62- 160, F.A.C., and subsections 62-302.200(1) and (4), F.A.C., respectively. Water segments with two samples indicating acute toxicity within a twelve month period shall be placed on the planning list. Samples must be collected at least two weeks apart over a twelve month period, some time during the ten years preceding the assessment. Water segments with two samples indicating chronic toxicity within a twelve month period shall be placed on the planning list. Samples must be collected at least two weeks apart, some time during the ten years preceding the assessment. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Subsection (1) of Rule 62-320.200, Florida Administrative Code, which is referenced in Subsection (1) of proposed Rule 62-303.340, Florida Administrative Code, defines "acute toxicity." It provides as follows: "Acute Toxicity" shall mean the presence of one or more substances or characteristics or components of substances in amounts which: are greater than one-third (1/3) of the amount lethal to 50% of the test organisms in 96 hours (96 hr LC50) where the 96 hr LC50 is the lowest value which has been determined for a species significant to the indigenous aquatic community; or may reasonably be expected, based upon evaluation by generally accepted scientific methods, to produce effects equal to those of the concentration of the substance specified in (a) above. Subsection (4) of Rule 62-320.200, Florida Administrative Code, which is also referenced in Subsection (1) of proposed Rule 62-303.340, Florida Administrative Code, defines "chronic toxicity." It provides as follows: "Chronic Toxicity" shall mean the presence of one or more substances or characteristics or components of substances in amounts which: are greater than one-twentieth (1/20) of the amount lethal to 50% of the test organisms in 96 hrs (96 hr LC50) where the 96 hr LC50 is the lowest value which has been determined for a species significant to the indigenous aquatic community; or may reasonably be expected, based upon evaluation by generally accepted scientific methods, to produce effects equal to those of the concentration of the substance specified in (a) above. Testing for "acute toxicity" or "chronic toxicity," within the meaning of Subsections (1) and (4) of Rule 62- 320.200, Florida Administrative Code (and therefore proposed Rule 62-303.340, Florida Administrative Code) does not involve measuring the level of any particular parameter in the water sampled. Rather, the tests focus upon the effects the sampled water has on test organisms. Mortality is the end point that characterizes "acute toxicity." "Chronic toxicity" has more subtle effects, which may include reproductive and/or growth impairment. Historically, the Department has tested effluent for "acute toxicity" and "chronic toxicity," but it has not conducted "acute toxicity" or "chronic toxicity" testing in receiving waters. The requirement of Subsections (2) and (3) of proposed Rule 62-303.340, Florida Administrative Code, that test data be no older than ten years old is reasonably designed to make it less likely that a water will be placed on the "planning list" based upon toxicity data not representative of the water's current conditions. Requiring that toxicity be established by at least "two samples" taken "at least two weeks apart" during a "twelve month period," as do Subsections (2) and (3) of proposed Rule 62-303.340, Florida Administrative Code, is also a prudent measure intended to minimize inappropriate listing decisions. To properly determine whether toxicity (which can "change over time") is a continuing problem that may be remedied by TMDL implementation, it is desirable to have more than one sample indicating toxicity. "The judgment was made [by the TAC] that two [samples] would be acceptable to make that determination." The TAC "wanted to include as much data regarding . . . toxicity . . . , and therefore lowered the bar in terms of data sufficiency . . . to only two samples." As noted above, the "minimum criteria for surface waters established in Rule 62-302.500, F.A.C.," which, if not met, will result in a water being placed on the "planning list" pursuant to Subsection (1) of proposed Rule 62-303.300, Florida Administrative Code, include the requirement that surface waters not be "acutely toxic." Whether a water should be placed on the "planning list" because it fails to meet this "minimum criterion" (or "free from") will be determined in light of the provisions of proposed Rule 62-303.340, Florida Administrative Code. Except for "[s]ilver in concentrations above 2.3 micrograms/liter in predominantly marine waters," "acute toxicity" is the only "free from" addressed in any portion of Part II of the proposed rule chapter outside of Subsection (1) of proposed Rule 62-303.300, Florida Administrative Code. Part II: Proposed Rules 62-303.350 through 62-303.353, Florida Administrative Code Proposed Rules 62-303.350 through 62-303.353, Florida Administrative Code, address "nutrients." Nutrients, which consist primarily of nitrogen and phosphorous, stimulate plant growth (and the production of organic materials). Waste water treatment facilities, certain industrial facilities that discharge waste water, phosphate mines, and agricultural and residential lands where fertilizers are used are among the sources of nutrients that affect water bodies in Florida. Nutrients are important to the health of a water body, but when they are present in excessive amounts, problems can arise. Excessive amounts of nutrients can lead to certain species, typically algaes, out-competing native species that are less able to use these nutrients, which, in turn, results in a change in the composition of the aquatic population and, subsequently, the animal population. Factors influencing how a water body responds to nutrient input include location, water body type, ecosystem characteristics, water flow, and the extent of light inhibition. As Mr. Frydenborg testified at the final hearing, nutrients are "probably the most widespread and pervasive cause of environmental disturbance in Florida" and they present "the biggest challenge [that needs to be] overcome in protecting aquatic systems." See also Rule 62-302.300(13), Florida Administrative Code ("The Department finds that excessive nutrients (total nitrogen and total phosphorus) constitute one of the most severe water quality problems facing the State."). As noted above, nutrients are among the parameters for which water quality criteria have been established by the Department in Rule 62-302.530, Florida Administrative Code. The criterion for nutrients set forth in Subsection (48)(b) of the rule (which applies to all "water quality classifications") is a "narrative . . . criterion," as that term is used in Subsection (3)(c) of Section 403.067, Florida Statutes. It is as follows: "In no case shall nutrient concentrations of a body of water be altered as to cause an imbalance of natural populations of aquatic flora or fauna." Proposed Rule 62-303.350, Florida Administrative Code, is entitled, "Interpretation of Narrative Nutrient Criteria," and, as noted in Subsection (4) of proposed Rule 62- 303.310, Florida Administrative Code, "outline[s]" the requirements that must be met for a water to qualify for placement on the "planning list" based upon excessive "nutrient enrichment." It lists Sections 403.061 and 403.067, Florida Statutes, as its "[s]pecific [a]uthority" and Sections 403.062 and 403.067, Florida Statutes, as the "[l]aw [i]mplemented." Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code, reads as follows: Trophic state indices (TSIs) and annual mean chlorophyll a values shall be the primary means for assessing whether a water should be assessed further for nutrient impairment. Other information indicating an imbalance in flora or fauna due to nutrient enrichment, including, but not limited to, algal blooms, excessive macrophyte growth, decrease in the distribution (either in density or areal coverage) of seagrasses or other submerged aquatic vegetation, changes in algal species richness, and excessive diel oxygen swings shall also be considered. Any type of water body (stream, estuary, or lake) may be placed on the "planning list" based upon the "other information" described in the second sentence of Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code. Whether to do so in a particular case will involve the exercise of "best professional judgment" on the part of the Department. The items specifically mentioned in the second sentence of Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code, "[a]lgal blooms, excessive macrophyte growth, decrease in the distribution (either in density or areal coverage) of seagrasses or other submerged aquatic vegetation,46 changes in algal species richness, and excessive diel oxygen swings," are all indicators of excessive "nutrient enrichment." The "but not limited to" language in this sentence makes it abundantly clear that this is not an exhaustive listing of "other information indicating an imbalance in flora or fauna due to nutrient enrichment" that will be considered by the Department in determining whether a water should be placed on the "planning list." During the rule development process, there were a number of members of the public who expressed the view that the Department's possession of the "information" described in the second sentence of Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code, should be the sole basis for determining "nutrient impairment" and that TSIs and annual mean chlorophyll a values should not be used. Department staff rejected these suggestions and drafted the proposed rule chapter to provide for additional ways, using TSIs and annual mean chlorophyll a values, for a water to make the "planning list" based upon excessive "nutrient enrichment." Chlorophyll a is the photosynthetic pigment in algae. Measuring chlorophyll a concentrations in water is a reasonable surrogate for measuring the amount of algal biomass present (which is indicative of the extent of nutrient enrichment inasmuch as nutrients promote algal growth). Chlorophyll a values, expressed in micrograms per liter, reflect the concentration of suspended algae (phytoplankton) in the water.47 High amounts of chlorophyll a indicate that there have been algal blooms. Algal blooms represent significant increases in algal population (phytoplankton) over a short period of time. They have a deleterious effect on the amount of dissolved oxygen in the water. Algal blooms may occur in any season. There are no adequate means to predict when they will occur. An annual mean chlorophyll a value reflects the level of nutrient enrichment occurring in a water over the course of a year. Biologists look at these values when studying the productivity of aquatic systems. Using an annual mean is the "best way" of determining whether nutrient enrichment is a consistent enough problem to cause an imbalance in flora or fauna. The TSI was developed for the Department's use in preparing 305(b) Reports. It is a "tried and true method" of assessing lakes (and only lakes) for "nutrient impairment." No comparable special index exists for other types of water bodies in this state. TSI values are derived from annual mean chlorophyll a, as well as nitrogen and phosphorous, values (which are composited). The process of "[c]alculating the Trophic State Index for lakes" was described in the "State's 1996 305(b) report" (on page 86) as follows: The Trophic State Index effectively classifies lakes based on their chlorophyll levels and nitrogen and phosphorous concentrations. Based on a classification scheme developed in 1977 by R.E. Carlson, the index relies on three indicators-- Secchi depth, chlorophyll, and total phosphorous-- to describe a lake's trophic state. A ten unit change in the index represents a doubling or halving or algal biomass. The Florida Trophic State Index is based on the same rationale but also includes total nitrogen as a third indicator. Attempts in previous 305(b) reports to include Secchi depth have caused problems in dark-water lakes and estuaries, where dark waters rather than algae diminish transparency. For this reason, our report drops Secchi depth as a category. We developed Florida lake criteria from a regression analysis of data on 313 Florida lakes. The desirable upper limit for the index is 20 micrograms per liter of chlorophyll, which corresponds to an index of 60. Doubling the chlorophyll concentration to 40 micrograms per liter increases the index to 70, which is the cutoff for undesirable (or poor) lake quality. Index values from 60 to 69 represent fair water quality. . . . The Nutrient Trophic State Index is based on phosphorous and nitrogen concentrations and the limiting nutrient concept. The latter identifies a lake as phosphorous limited if the nitrogen-to-phosphorous concentration ratio is greater than 30, nitrogen limited if the ratio is less than 10, and balanced (depending on both nitrogen and phosphorous) if the ratio is 10 to 30. The nutrient ratio is thus based solely on phosphorous if the ratio is greater than 30, solely on nitrogen if less than 10, or on both nitrogen and phosphorous if between 10 and 30. We calculated an overall Trophic State Index based on the average of the chlorophyll and nutrient indices. Calculating an overall index value requires both nitrogen and phosphorous measurements. Subsections (2) and (3) of proposed Rule 62-303.350, Florida Administrative Code, which provide as follows, impose reasonable data sufficiency and quality requirements for calculating TSIs and annual mean chlorophyll a values and changes in those values from "historical levels": To be used to determine whether a water should be assessed further for nutrient enrichment, data must meet the requirements of paragraphs (2)-(4), (6), and (7) in rule 62- 303.320, at least one sample from each season shall be required in any given year to calculate a Trophic State Index (TSI) or an annual mean chlorophyll a value for that year, and there must be annual means from at least four years, when evaluating the change in TSI over time pursuant to paragraph 62- 303.352(3). When comparing changes in chlorophyll a or TSI values to historical levels, historical levels shall be based on the lowest five-year average for the period of record. To calculate a five-year average, there must be annual means from at least three years of the five-year period. These requirements do not apply to the "other information" referenced in the second sentence of Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code. As was stated in the NRC Publication, and as Department staff recognized, "data are not the same as information." Subsection (2)(b) of proposed Rule 62-303.350, Florida Administrative Code, being more specific, modifies Subsection (2)(a) of the proposed rule, to the extent that Subsection (2)(a) incorporates by reference the requirement of Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, that "at least one sampling event [be] conducted in [only] three of the four seasons of the calendar year." Requiring data from at least each season is appropriate because the data will be used to arrive at numbers that represent annual means. Furthermore, as noted above, there is no season in which bloom events never occur in this state. Four years of data, as required by Subsection (2)(c) of proposed Rule 62-303.350, Florida Administrative Code, establishes a "genuine trend" in the TSI. The requirement, in Subsection (2)(c) of proposed Rule 62-303.350, Florida Administrative Code, that the "lowest five-year average for the period of the record" be used to establish "historical levels" was intended to make it easier for a water to be placed on the "planning list" for "nutrient impairment." 190. Proposed Rules 62-303.351, 62-303.352, and 62- 303.353, Florida Administrative Code, establish reasonable statewide TSI and annual mean chlorophyll a values, which if exceeded, will result in a water being placed on the "planning list."48 In establishing these statewide threshold values, Department staff took into consideration that averaging values obtained from samples taken during bloom events with lower values obtained from other samples taken during the course of the year (to get an annual mean value for a water) would minimize the impact of the higher values and, accordingly, they set the thresholds at levels lower than they would have if the thresholds represented, not annual mean values, but rather values that single samples, evaluated individually, could not exceed. Department staff recognized that the statewide thresholds they set "may not be protective of very low nutrient waters." They therefore, in proposed Rules 62-303.351, 62- 303.352, and 62-303.353, Florida Administrative Code, reasonably provided that waters not exceeding these thresholds could nonetheless get on the "planning list" for "nutrient impairment" based upon TSI values (in the case of lakes) or annual mean chlorophyll a values (in the case of streams and estuaries) if these values represented increases, of sufficient magnitude, as specified in the proposed rules, over "historical levels." Proposed Rule 62-303.351, Florida Administrative Code, is entitled, "Nutrients in Streams," and reads as follows: A stream or stream segment shall be included on the planning list for nutrients if the following biological imbalances are observed: algal mats are present in sufficient quantities to pose a nuisance or hinder reproduction of a threatened or endangered species, or annual mean chlorophyll a concentrations are greater than 20 ug/l or if data indicate annual mean chlorophyll a values have increased by more than 50% over historical values for at least two consecutive years. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The TAC and Department staff investigated the possibility of evaluating "nutrient impairment" in streams by looking at the amount of attached algae (measured in milligrams of chlorophyll a per square meter) as opposed to suspended algae, but "weren't able to come up with" an appropriate "number." They were advised of a "paper" in which the author concluded that 150 milligrams of chlorophyll a per square meter was "indicative of imbalances in more northern conditions rivers." Reviewing Florida data, the TAC and Department staff determined that this threshold would be "non-protective in our state" inasmuch as the "the highest chlorophylls" in the Florida data they reviewed were 50 to 60 milligrams of chlorophyll a per square meter. Subsection (1) of proposed Rule 62-303.351, Florida Administrative Code, which describes, in narrative terms, another type of "information indicating an imbalance in flora or fauna due to nutrient enrichment" (in addition to those types of information specified in Subsection (1) of proposed Rule 62- 303.350, Florida Administrative Code), was included in proposed Rule 62-303.351 in lieu of establishing a numerical "milligrams of chlorophyll a per square meter" threshold. The term "nuisance," as used in Subsection (1) of proposed Rule 62-303.351, Florida Administrative Code, was intended to have the same meaning as it has in Rule 62-302.500, Florida Administrative Code. "Nuisance species," as used in Rule Chapter 62-500, Florida Administrative Code, are defined as "species of flora or fauna whose noxious characteristics or presence in sufficient number, biomass, or areal extent may reasonably be expected to prevent, or unreasonably interfere with, a designated use of those waters." Mr. Joyner knew that the Suwannee River "had problems with algal mats49 and that those algal mats might hinder reproduction of the sturgeon" in the river. The "hinder reproduction of a threatened or endangered species" language was inserted in Subsection (1) of proposed Rule 62-303.351, Florida Administrative Code, "to address things like that" occurring in the Suwannee River. It was "very difficult" for the TAC and Department staff to come up with a "micrograms per liter" threshold for Subsection (2) of proposed Rule 62-303.351, Florida Administrative Code. All available data on Florida streams were reviewed before the TAC and Department staff decided on a threshold. The threshold ultimately selected, 20 micrograms per liter, "represents approximately the 80th percentile value currently found in Florida streams," according to the data reviewed. The "20 micrograms per liter" threshold, combined with the other provisions of the proposed rule and the second sentence of proposed Rule 62-303.350, Florida Administrative Code, was "thought to be something that would hold the line on future [nutrient] enrichment," particularly with respect to streams "like the lower St. Johns River which tends to act more like a lake." Anything over 20 micrograms per liter of chlorophyll a "is a clear indication that an imbalanced situation is occurring." There are some streams in Florida that have high nutrient concentrations but, because of flow conditions and water color, also have low levels of chlorophyll a in the water column (reflecting that the nutrients' presence in the water has not resulted in significant algal growth). That these streams would not qualify for placement on the "planning list" pursuant to proposed Rule 62-303.351, Florida Administrative Code, as drafted, did not concern the TAC and Department staff because they thought it appropriate "to focus on [the] realized impairment" caused by nutrients, not on their mere presence in the stream. If these nutrients travel downstream and adversely affect the downstream water to such an extent that the downstream water qualifies for a TMDL, "all the sources upstream would be addressed" in the TMDL developed for the downstream water. Pursuant to Subsection (2) of proposed Rule 62- 303.351, Florida Administrative Code, streams with "very, very low chlorophylls," well under 20 micrograms per liter, can nonetheless qualify for placement on the planning list based upon two consecutive years of increased annual mean chlorophyll a values "over historical values." In the case of a stream with "historical values" of two micrograms per liter, for instance, the increase would need to be only more than one microgram per liter. Proposed Rule 62-303.352, Florida Administrative Code, is entitled, "Nutrients in Lakes," and reads as follows: For the purposes of evaluating nutrient enrichment in lakes, TSIs shall be calculated based on the procedures outlined on pages 86 and 87 of the State's 1996 305(b) report, which are incorporated by reference. Lakes or lake segments shall be included on the planning list for nutrients if: For lakes with a mean color greater than 40 platinum cobalt units, the annual mean TSI for the lake exceeds 60, unless paleolimnological information indicates the lake was naturally greater than 60, or For lakes with a mean color less than or equal to 40 platinum cobalt units, the annual mean TSI for the lake exceeds 40, unless paleolimnological information indicates the lake was naturally greater than 40, or For any lake, data indicate that annual mean TSIs have increased over the assessment period, as indicated by a positive slope in the means plotted versus time, or the annual mean TSI has increased by more than 10 units over historical values. When evaluating the slope of mean TSIs over time, the Department shall use a Mann's one-sided, upper-tail test for trend, as described in Nonparametric Statistical Methods by M. Hollander and D. Wolfe 16 (1999 ed.), pages 376 and 724 (which are incorporated by reference), with a 95% confidence level. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New As noted above, a TSI value of 60, the threshold established in Subsection (1) of proposed Rule 62-303.352, Florida Administrative Code, for darker-colored lakes, is the equivalent of a chlorophyll a value of 20 micrograms per liter, which is the "micrograms per liter" threshold for streams established in Subsection (2) of proposed Rule 62-303.351, Florida Administrative Code. A TSI value 40, the threshold established in Subsection (2) of proposed Rule 62-303.352, Florida Administrative Code, for lighter-colored lakes, corresponds to a chlorophyll a value of five micrograms per liter, which "is an extremely low level." A TSI value of 40 is "very protective for that particular category of lake[s]." A lower threshold was established for these lighter- colored lakes (having a mean color less than or equal to 40 platinum cobalt units) because it was felt that these lakes needed "extra protection." Providing such "extra protection" is reasonably justified inasmuch as these lakes (due to their not experiencing the "infusion of leaf litter" that affects darker- colored lakes) tend to have a "lower nutrient content naturally" and therefore "very different aquatic communities" than their darker counterparts. Some lakes are naturally eutrophic or even hyper- eutrophic. Inasmuch as the TMDL program is not designed to address such natural occurrences, it makes sense to provide, as Subsections (1) and (2) of proposed Rule 62-303.352, Florida Administrative Code, do, that the TSI thresholds established therein will not apply if "paleolimnological information" indicates that the TSI of the lake in question was "naturally greater" than the threshold established for that type of lake (60 in the case of a darker-colored lake and 40 in the case of a lighter-colored lake). Lakes with TSI values that do not exceed the appropriate threshold may nonetheless be included on the "planning list" based upon "increas[es] in TSIs" pursuant to Subsection (3) of proposed Rule 62-303.352, Florida Administrative Code. Any statistically significant increase in TSI values "over the assessment period," as determined by "use [of] a Mann's one-sided, upper-tail test for trend" and a "95% confidence level" (which the TAC recommended inasmuch as it is "the more typical scientific confidence level"), or an increase in the annual mean TSI of more than ten units "over historical values," will result in a lake being listed pursuant to Subsection (3) of proposed Rule 62-303.352, Florida Administrative Code. The first of these two alternative ways of a lake getting on the "planning list" based upon "increas[es] in TSIs" is "more protective" than the second. Under this first alternative, a lake could be listed before there was more than a ten unit increase in the annual mean TSI "over historical values." A ten-unit increase in the annual mean TSI represents a doubling (or 100 percent increase) "over historical values." As noted above, pursuant to Subsection (3) of proposed Rule 62- 303.351, Florida Administrative Code, only a 50 percent increase "over historical values" in annual mean chlorophyll a values is needed for a stream to make the "planning list" and, as will be seen, proposed Rule 62-303.353, Florida Administrative Code, contains a similar "50 percent increase" provision for estuaries; however, because "lakes are much more responsive to nutrients," Department staff reasonably believed that "the ten- unit change was a protective measure." Proposed Rule 62-303.353, Florida Administrative Code, is entitled, "Nutrients in Estuaries," and reads as follows: Estuaries or estuary segments shall be included on the planning list for nutrients if their annual mean chlorophyll a for any year is greater than 11 ug/l or if data indicate annual mean chlorophyll a values have increased by more than 50% over historical values for at least two consecutive years. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Estuaries are at "the very bottom" of the watershed. The amount of nutrients in an estuary is dependent, not only on what is occurring in and around the immediate vicinity of the estuary,50 but also "what is coming down" any river flowing into it. Not all of the nutrients in the watershed reach the estuary inasmuch as "there is assimilation and uptake along the way." The "11 micrograms per liter" threshold ultimately selected as a "protective number in terms of placing estuaries on the 'planning list'" was recommended by the TAC following a review of data reflecting trends with respect to chlorophyll a levels in various Florida estuaries. In addition, the TAC heard a presentation concerning the "modeling work" done by the Tampa Bay National Estuary Program to establish "site-specific" chlorophyll a targets for segments of Tampa Bay, including the target of 13.2 micrograms per liter that was established for the Hillsborough Bay segment of Tampa Bay, which is "closer to the [nutrient] sources" than other parts of Tampa Bay. The TAC also considered information about "various bloom situations" in estuaries which led to the "general feeling" that an estuarine algal bloom involved chlorophyll a values "considerably higher" than 11 micrograms per liter. An alternative method for an estuary to make the "planning list" for "nutrient impairment" based upon a 50 percent increase in annual mean chlorophyll a values "over historical values" was included in proposed Rule 62-303.353, Florida Administrative Code, because the "11 micrograms per liter" threshold was not expected "to be adequately protect[ive]" of "the very clear sea grass communities" like those found in the Florida Keys. Part II: Proposed Rule 62-303.360, Florida Administrative Code Proposed Rule 62-303.360, Florida Administrative Code, establishes four separate ways for a water to be placed on the "planning list" for failing to provide "primary contact and recreation use support." It reads as follows: Primary Contact and Recreation Use Support A Class I, II, or III water shall be placed on the planning list for primary contact and recreation use support if: the water segment does not meet the applicable water quality criteria for bacteriological quality based on the methodology described in section 62-303.320, or the water segment includes a bathing area that was closed by a local health Department or county government for more than one week or more than once during a calendar year based on bacteriological data, or the water segment includes a bathing area for which a local health Department or county government has issued closures, advisories, or warnings totaling 21 days or more during a calendar year based on bacteriological data, or the water segment includes a bathing area that was closed or had advisories or warnings for more than 12 weeks during a calendar year based on previous bacteriological data or on derived relationships between bacteria levels and rainfall or flow. For data collected after August 1, 2000, the Florida Department of Health (DoH) database shall be the primary source of data used for determining bathing area closures. Advisories, warnings, and closures based on red tides, rip tides, sewage spills, sharks, medical wastes, hurricanes, or other factors not related to chronic discharges of pollutants shall not be included when assessing recreation use support. However, the Department shall note for the record that data were excluded and explain why they were excluded. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The "water quality criteria for bacteriological quality" referenced in Subsection (1)(a) of proposed Rule 62- 303.360, Florida Administrative Code, are set forth in Subsections (6) and (7) of Rule 62-303.530, Florida Administrative Code, which provide as follows: Parameter: Bacteriological Quality (Fecal Coliform Bacteria) Units: Number per 100 ml (Most Probable Number (MPN) or Membrane Filter (MF)) Class I: MPN or MF counts shall not exceed a monthly average of 200, nor exceed 400 in 10% of the samples, nor exceed 800 on any one day. Monthly averages shall be expressed as geometric means based on a minimum of 5 samples taken over a 30 day period. Class II: MPN shall not exceed a median value of 14 with not more than 10% of the samples exceeding 43, nor exceed 800 on any one day. Class III: Fresh: MPN or MF counts shall not exceed a monthly average of 200, nor exceed 400 in 10% of the samples, nor exceed 800 on any one day. Monthly averages shall be expressed as geometric means based on a minimum of 10 samples taken over a 30 day period. Class III: Marine: MPN or MF counts shall not exceed a monthly average of 200, nor exceed 400 in 10% of the samples, nor exceed 800 on any one day. Monthly averages shall be expressed as geometric means based on a minimum of 10 samples taken over a 30 day period. Parameter: Bacteriological Quality (Total Coliform Bacteria) Units: Number per 100 ml (Most Probable Number (MPN) or Membrane Filter (MF)) Class I: < = 1,000 as a monthly avg., nor exceed 1,000 in more than 20% of samples examined during any month, nor exceed 2,400 at any time using either MPN or MF counts. Class II: Median MPN shall not exceed 70 and not more than 10% of the samples shall exceed an MPN of 230. Class III: Fresh: < = 1,000 as a monthly average, nor exceed 1,000 in more than 20% of samples examined during any month, < = 2,400 at any time. Monthly averages shall be expressed as geometric means based on a minimum or 10 samples taken over a 30 day period, using either the MPN or MF counts. Class III: Marine: < = 1,000 as a monthly average, nor exceed 1,000 in more than 20% of samples examined during any month, < = 2,400 at any time. Monthly averages shall be expressed as geometric means based on a minimum or 10 samples taken over a 30 day period, using either the MPN or MF counts. Fecal coliform bacteria are found in the feces of animals and humans. They can be identified in the laboratory "fairly easily, usually within 24 to 48 hours" and "are used worldwide as indicators of fecal contamination and potential public health risks." Enterococci are another "distinct group of bacteria." They too are found in animal and human feces. The recommendation has been made that enterococci be used as bacteriological "indicators" for assessing "public health risk and swimmability," particularly in marine waters. The Department, however, is not convinced that there is "sufficient science at this time" to warrant adoption of this recommendation in states, like Florida, with "warmer climates," and it has not amended Rule 62-303.530, Florida Administrative Code, to provide for the assessment of bacteriological quality using enterococci counts.51 The statistical "methodology described in [proposed Rule] 62-303.320," Florida Administrative Code (which is incorporated by reference in Subsection (1)(a) of proposed Rule 62-303.360, Florida Administrative Code) is as appropriate for determining whether a water should be placed on the "planning list" based upon exceedances of bacteriological water quality criteria as it is for determining whether a water should be placed on the "planning list" for "[e]xceedances of [a]quatic [l]ife-[b]ased [c]riteria." Unlike Subsection (1)(a) of proposed Rule 62-303.360, Florida Administrative Code, Subsections (1)(b), (1)(c), and (1)(d) of the proposed rule, at least indirectly, allow for waters to be placed on the "planning list" based upon enterococci counts. The closures, advisories, and warnings referenced in Subsections (1)(b), (1)(c), and (1)(d) of proposed Rule 62- 303.360, Florida Administrative Code, are issued, not by the Department, but by local health departments or county governments, and may be based upon enterococci sampling done by those governmental entities. Subsection (1)(b) of proposed Rule 62-303.360, Florida Administrative Code, provides for listing based exclusively upon bathing area closures. It was included in the proposed rule upon the recommendation of the EPA "to track their 305(b) guidance." Both freshwater and marine bathing areas in Florida may be closed if circumstances warrant. The Department of Health (which operates the various county health departments) does not close marine beaches, but county governments may. Subsection (1)(c) of proposed Rule 62-303.360, Florida Administrative Code, provides for listing based upon any combination of closures, advisories, or warnings "totaling 21 days or more during a calendar year," provided the closures, advisories, and warnings were based upon up-to-date "bacteriological data." Department staff included this provision in the proposed rule in lieu of a provision recommended by the TAC (about which Petitioner Young had expressed concerns) that would have made it more difficult for a water to be placed on the "planning list" as a result of bacteriological data-based closures, advisories, or warnings. In doing so, Department staff exercised sound professional judgment. The 21 days or more of closures, advisories, or warnings needed for listing under the proposed rule do not have to be consecutive, although they all must occur in the same calendar year. Subsection (1)(d) of proposed Rule 62-303.360, Florida Administrative Code, like Subsection (1)(c) of the proposed rule, provides for listing based upon a combination of closures, advisories, or warnings, but it does not require that it be shown that the closures, advisories, or warnings were based upon up-to-date "bacteriological data." Under Subsection (1)(d) of the proposed rule, the closures, advisories, or warnings need only have been based upon "previous [or, in other words, historical] bacteriological data" or "derived relationships between bacteria levels and rainfall or flow." Because assessments of current bacteriological quality based upon "previous bacteriological data" or on "derived relationships between bacteria levels and rainfall or flow" are less reliable than those based upon up-to-date "bacteriological data," Department staff were reasonably justified in requiring a greater total number of days of closures, advisories, or warnings in this subsection of the proposed rule (more than 84) than they did in Subsection (1)(c) of the proposed rule (more than 21). (Like under Subsection (1)(c) of the proposed rule, the days of closures, advisories, or warnings required for listing under Subsection (1)(d) of the proposed rule do not have to be consecutive days.) Subsection (1)(d) was included in the proposed rule in response to comments made at a TAC meeting by Mike Flannery of the Pinellas County Health Department concerning Pinellas County beaches that were "left closed for long periods of time" without follow-up bacteriological testing. Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, reasonably limits the closures, advisories, and warnings upon which the Department will be able to rely in determining whether a water should be placed on the "planning list" pursuant to Subsections (1)(b), (1)(c), or (1)(d) of the proposed rule to those closures, advisories, and warnings based upon "factors . . . related to chronic discharges of pollutants." The TMDL program is designed to deal neither with short-term water quality problems caused by extraordinary events that result in atypical conditions,52 nor with water quality problems unrelated to pollutant discharges in this state. It is therefore sensible to not count, for purposes of determining "planning list" eligibility pursuant to Subsections (1)(b), (1)(c), or (1)(d) of proposed Rule 62-303.360, Florida Administrative Code, closures, advisories, and warnings that were issued because of the occurrence of such problems. A "spill," by definition (set out in Subsection (16) of proposed Rule 62-303.200, Florida Administrative Code, which is recited above), is a "short term" event that does not include "sanitary sewer overflows or chronic discharges from leaking wastewater collection systems." While a one-time, unpermitted discharge of sewage (not attributable to "sanitary sewer overflow") is a "short- term" event constituting a "sewage spill," as that term is used in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, repeated unpermitted discharges occurring over an extended period of time (with or without interruption) do not qualify as "sewage spills" and therefore Subsection (3) of the proposed rule will not prevent the Department from considering closures, advisories, and warnings based upon such discharges in deciding whether the requirements for listing set forth in Subsections (1)(b), (1)(c), or (1)(d) of the proposed rule have been met. Like "sewage spills," "red tides" are among the events specifically mentioned in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code. "Red tide" is a "very loose term" that can describe a variety of occurrences. It is apparent from a reading of the language in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, in its entirety, that "red tide," as used therein, was intended to describe an event "not related to chronic discharges of pollutants." Department staff's understanding of "red tides" was shaped by comments made at a TAC meeting by one of the TAC members, George Henderson of the Florida Marine Research Institute. Mr. Henderson told those present at the meeting that "red tides are an offshore phenomenon that move on shore" and are fueled by nutrients from "unknown sources" likely located, for the most part, outside of Florida, in and around the Mississippi River. No "contrary scientific information" was offered during the rule development process.53 Lacking "scientific information" clearly establishing that "red tides," as they understood the term, were the product of "pollutant sources in Florida," Department staff reasonably concluded that closures, advisories, and warnings based upon such "red tides" should not be taken into consideration in deciding whether a water should be placed on the "planning list" pursuant to Subsections (1)(b), (1)(c), or (1)(d) of proposed Rule 62- 303.360, Florida Administrative Code, and they included language in Subsection (3) of the proposed rule to so provide. The "red tides" to which Mr. Henderson referred are harmful algae blooms that form off-shore in the Gulf of Mexico and are brought into Florida coastal waters by the wind and currents. There appears to be an association between these blooms of toxin-producing algae and nutrient enrichment, but the precise cause of these bloom events is "not completely understood." Scientists have not eliminated the possibility that, at least in some instances, these "red tides" are natural phenomena not the result of any pollutant loading either in or outside of Florida. The uncertainty surrounding the exact role, if any, that Florida-discharged pollutants play in the occurrence of the "red tides" referenced in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, reasonably justifies the Department's declining, for purposes of determining whether the listing requirements of Subsections (1)(b), (1)(c), or (1)(d) of the proposed rule have been met, to take into consideration closures, advisories, and warnings based upon such "red tides." The exclusions contained in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, will have no effect on the "information" or "data" that the Department will be able to consider under any provision in Part II of the proposed rule chapter other than Subsections (1)(b), (1)(c), and (1)(d) of proposed Rule 62-303.360. This includes the provisions of proposed Rule 62-303.350, Florida Administrative Code, which, as noted above, provides, among other things, that "planning list" eligibility may be based upon "information indicating an imbalance in flora or fauna due to nutrient enrichment, including . . . algal blooms." Accordingly, notwithstanding the "red tides" exclusion in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, the presence of algal blooms of any type "indicating an imbalance in flora or fauna due to nutrient enrichment" will result in the affected water making the "planning list" pursuant to proposed Rule 62-303.350, Florida Administrative Code, to be "assessed further for nutrient impairment." Part II: Proposed Rule 62-303.370, Florida Administrative Code Proposed Rule 62-303.370, Florida Administrative Code, provides three separate ways for a water to "be placed on the planning list for fish and shellfish consumption." It reads as follows: Fish and Shellfish Consumption Use Support A Class I, II, or III water shall be placed on the planning list for fish and shellfish consumption if: the water segment does not meet the applicable Class II water quality criteria for bacteriological quality based on the methodology described in section 62-303.320, or there is either a limited or no consumption fish consumption advisory. issued by the DoH, or other authorized governmental entity, in effect for the water segment, or for Class II waters, the water segment includes an area that has been approved for shellfish harvesting by the Shellfish Evaluation and Assessment Program, but which has been downgraded from its initial harvesting classification to a more restrictive classification. Changes in harvesting classification from prohibited to unclassified do not constitute a downgrade in classification. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Subsection (1) of proposed Rule 62-303.370, Florida Administrative Code, which effectively duplicates the provisions of Subsection (1)(a) of proposed Rule 62-303.360, Florida Administrative Code, to the extent that those provisions apply to Class II waters, establishes an appropriate means of determining whether a water should "be placed on the planning list for fish and shellfish consumption." Waters that do not qualify for listing pursuant to Subsection (1) of proposed Rule 62-303.370, Florida Administrative Code, may make the "planning list" based upon "fish consumption advisories" under Subsection (2) of the proposed rule. The Department of Health, which issues these advisories, does so after conducting a statistical evaluation of fish tissue data collected from at least 12 fish. A large number of fish consumption advisories have been issued to date for a number of parameters, including, most significantly, mercury. The first fish consumption advisory was issued in 1989 after "high levels of mercury" were found in the sampled fish tissue. Many fish consumption advisories were issued ten or more years ago and are still in effect. Fish consumption advisories are continued until it is shown that they are not needed. Most of the fish tissue data for the fish consumption advisories now in effect were collected between 1989 and 1992. There is no reason to reject this data as not "being representative of the conditions under which those samples were collected." There has been data collected since 1992, but 1992 was "the last peak year" of sampling. Over the last ten years, the "focus has been on the Everglades" with respect to sampling for mercury, although sampling has occurred in "a broadly representative suite of water bodies statewide." The TAC recommended against using fish consumption advisories for listing coastal and marine waters because of the possibility that these advisories might be based upon tissue samples taken from fish who ingested mercury, or other substances being sampled, outside of the state. Department staff, however, rejected this recommendation and did not include a "coastal and marine waters" exclusion in Subsection (2) of proposed Rule 62-303.370, Florida Administrative Code. The Shellfish Evaluation and Assessment Program, which is referenced in Subsection (3) of proposed Rule 62- 303.370, Florida Administrative Code, is administered by the Florida Department of Agriculture and Consumer Services' Division of Aquaculture's Shellfish Environmental Assessment Section. The Shellfish Environmental Assessment Section (SEAS) is responsible for classifying and managing Florida shellfish harvesting areas in a manner that maximizes utilization of the state's shellfish resources and reduces the risk of shellfish- borne illness. In carrying out its responsibilities, the SEAS applies the "[s]hellfish [h]arvesting [a]rea [s]tandards" set forth in Rule 5L-1.003, Florida Administrative Code, which provides as follows: The Department shall describe and/or illustrate harvesting areas and provide harvesting area classifications as approved, conditionally approved, restricted, conditionally restricted, prohibited, or unclassified as defined herein, including criteria for opening and closing shellfish harvesting areas in accordance with Chapters II and IV of the National Shellfish Sanitation Program Model Ordinance. Copies of the document Shellfish Harvesting Area Classification Maps, revised October 14, 2001, and the document Shellfish Harvesting Area Classification Boundaries and Management Plans, revised October 14, 2001, containing shellfish harvesting area descriptions, references to shellfish harvesting area map numbers, and operating criteria herein incorporated by reference may be obtained by writing to the Department at 1203 Governors Square Boulevard, 5th Floor, Tallahassee, Florida 32301. Approved areas -- Growing areas shall be classified as approved when a sanitary survey, conducted in accordance with Chapter IV of the National Shellfish Sanitation Program Model Ordinance, indicates that pathogenic microorganisms, radionuclides, and/or harmful industrial wastes do not reach the area in dangerous concentrations and this is verified by laboratory findings whenever the sanitary survey indicates the need. Shellfish may be harvested from such areas for direct marketing. This classification is based on the following criteria: The area is not so contaminated with fecal material or poisonous or deleterious substances that consumption of the shellfish might be hazardous; and The bacteriological quality of every sampling station in those portions of the area most probably exposed to fecal contamination shall meet one of the following standards during the most unfavorable meteorological, hydrographic, seasonal, and point source pollution conditions: 1) The median or geometric mean fecal coliform Most Probable Number (MPN) of water shall not exceed 14 per 100 ml., and not more than 10 percent of the samples shall exceed a fecal coliform MPN of 43 per 100 ml. (per 5-tube, 3-dilution test) or 2) The median or geometric mean fecal coliform Most Probable Number (MPN) of water shall not exceed 14 per 100 ml., and not more than 10 percent of the samples shall exceed a fecal coliform MPN of 33 per 100 ml. (per 12-tube, single-dilution test). Harvest from temporarily closed approved areas shall be unlawful. Conditionally approved areas -- A growing area shall be classified as conditionally approved when a sanitary survey, conducted in accordance with Chapter IV of the National Shellfish Sanitation Program Model Ordinance, indicates that the area is subjected to intermittent microbiological pollution. The suitability of such an area for harvesting shellfish for direct marketing may be dependent upon attainment of established performance standards by wastewater treatment facilities discharging effluent directly or indirectly into the area. In other instances, the sanitary quality of the area may be affected by seasonal populations, climatic and/or hydrographic conditions, non-point source pollution, or sporadic use of a dock, marina, or harbor facility. Such areas shall be managed by an operating procedure that will assure that shellfish from the area are not harvested from waters not meeting approved area criteria. In order to develop effective operating procedures, these intermittent pollution events shall be predictable. Harvest from temporarily closed conditionally approved areas shall be unlawful. Restricted areas -- A growing area shall be classified as restricted when a sanitary survey, conducted in accordance with Chapter IV of the National Shellfish Sanitation Program Model Ordinance, indicates that fecal material, pathogenic microorganisms, radionuclides, harmful chemicals, and marine biotoxins are not present in dangerous concentrations after shellfish from such an area are subjected to a suitable and effective purification process. The bacteriological quality of every sampling station in those portions of the area most probably exposed to fecal contamination shall meet the following standard: The median or geometric mean fecal coliform Most Probable Number (MPN) of water shall not exceed 88 per 100 ml. and not more than 10 percent of the samples shall exceed a fecal coliform MPN of 260 per 100 ml. (per 5-tube, 3-dilution test) in those portions of the area most probably exposed to fecal contamination during the most unfavorable meteorological, hydrographic, seasonal, and point source pollution conditions. Harvest is permitted according to permit conditions specified in Rule 5L-1.009, F.A.C. Harvest from temporarily closed restricted areas shall be unlawful. Conditionally restricted area -- A growing area shall be classified as conditionally restricted when a sanitary survey or other monitoring program data, conducted in accordance with Chapter IV of the National Shellfish Sanitation Program Model Ordinance, indicates that the area is subjected to intermittent microbiological pollution. The suitability of such an area for harvest of shellfish for relaying or depuration activities is dependent upon the attainment of established performance standards by wastewater treatment facilities discharging effluent, directly or indirectly, into the area. In other instances, the sanitary quality of such an area may be affected by seasonal population, non-point sources of pollution, or sporadic use of a dock, marina, or harbor facility, and these intermittent pollution events are predictable. Such areas shall be managed by an operating procedure that will assure that shellfish from the area are not harvested from waters not meeting restricted area criteria. Harvest is permitted according to permit conditions specified in Rule 5L- 1.009, F.A.C. Harvest from temporarily closed conditionally restricted areas shall be unlawful. Prohibited area -- A growing area shall be classified as prohibited if a sanitary survey indicates that the area does not meet the approved, conditionally approved, restricted, or conditionally restricted classifications. Harvest of shellfish from such areas shall be unlawful. The waters of all man-made canals and marinas are classified prohibited regardless of their location. Unclassified area -- A growing area for which no recent sanitary survey exists, and it has not been classified as any area described in subsections (2), (3), (4), (5), or (6) above. Harvest of shellfish from such areas shall be unlawful. Approved or conditionally approved, restricted, or conditionally restricted waters shall be temporarily closed to the harvesting of shellfish when counts of the red tide organism Gymnodinium breve[54] exceed 5000 cells per liter in bays, estuaries, passes or inlets adjacent to shellfish harvesting areas. Areas closed to harvesting because of presence of the red tide organism shall not be reopened until counts are less than or equal to 5000 cells per liter inshore and offshore of the affected shellfish harvesting area, and shellfish meats have been shown to be free of toxin by laboratory analysis. The Department is authorized to open and temporarily close approved, conditionally approved, restricted, or conditionally restricted waters for harvesting of shellfish in emergencies as defined herein, in accordance with specific criteria established in operating procedures for predictively closing individual growing areas, or when growing areas do not meet the standards and guidelines established by the National Shellfish Sanitation Program . Operating procedures for predictively closing each growing area shall be developed by the Department; local agencies, including those responsible for operation of sewerage systems, and the local shellfish industry may be consulted for technical information during operating procedure development. The predictive procedure shall be based on evaluation of potential sources of pollution which may affect the area and should establish performance standards, specify necessary safety devices and measures, and define inspection and check procedures. Under Subsection (3) of proposed Rule 62-303.370, Florida Administrative Code, only the "downgrading" of an area initially approved for shellfish harvesting to a more restrictive classification will cause a Class II water to be "placed on the planning list for fish and shellfish consumption." The temporary closure of an approved harvesting area will not have the same result. Temporary closures of harvesting areas are not uncommon. These closures typically occur when there is heavy local rainfall or flooding events upstream, which result in high fecal coliform counts in the harvesting areas. While these areas are not being harvested during these temporary closures, "[p]ropagation is probably maximized in closure conditions." This is because, during these periods, there are "more nutrients for [the shellfish] to consume" inasmuch as the same natural events that cause fecal coliform counts to increase also bring the nutrients (in the form detritus) into the area. The Department of Agriculture and Consumer Services (DACS) does not reclassify an area simply because there have been short-term events, like sewage spills or extraordinary rain events, that have resulted in the area's temporary closure. Where there are frequent, extended periods of closures due to high fecal coliform counts in an area that exceed Class II water quality criteria for bacteriological quality, however, one would reasonably expect that reclassification action would be taken. Even if the DACS does not take such action, the water may nonetheless qualify for placement on the "planning list" pursuant to Subsection (1) of proposed Rule 62-303.370, Florida Administrative Code, based upon the fecal coliform data relied upon by the DACS in closing the area, provided the data meets the requirements set forth in proposed Rule 62-303.320, Florida Administrative Code. The DACS has never reclassified an area from "prohibited" to "unclassified." David Heil, the head of the SEAS, made a presentation at the April 20, 2000, TAC meeting, during which he enumerated various ways that the Department could determine "impairment as it relates to shellfish harvesting waters" and recommended, over the others, one of those options: combination of the average number and duration of closures over time. None of the options listed by Mr. Heil, including his top recommendation, were incorporated in proposed Rule 62- 303.370, Florida Administrative Code. The TAC and Department staff looked into the possibility of using the option touted by Mr. Heil, but determined that it would not be practical to do so. Relying on the DACS' reclassification of harvesting areas was deemed to be a more practical approach that was "consistent with the way the Department classifies waters as Class II and therefore it was included in the proposed rule."55 Code Part II: Proposed Rule 62-303.380, Florida Administrative Proposed Rule 62-303.380, Florida Administrative Code, provides three separate ways for a water to "be placed on the planning list for drinking water use support" and, in addition, addresses "human-health based criteria" not covered elsewhere in Part II of the proposed rule chapter. It reads as follows: Drinking Water Use Support and Protection of Human Health. A Class I water shall be placed on the planning list for drinking water use support if: the water segment does not meet the applicable Class I water quality criteria based on the methodology described in section 62-303.320, or a public water system demonstrates to the Department that either: Treatment costs to meet applicable drinking water criteria have increased by at least 25% to treat contaminants that exceed Class I criteria or to treat blue-green algae or other nuisance algae in the source water, or the system has changed to an alternative supply because of additional costs that would be required to treat their surface water source. When determining increased treatment costs described in paragraph (b), costs due solely to new, more stringent drinking water requirements, inflation, or increases in costs of materials shall not be included. A water shall be placed on the planning list for assessment of the threat to human health if: for human health-based criteria expressed as maximums, the water segment does not meet the applicable criteria based on the methodology described in section 62- 303.320, or for human health-based criteria expressed as annual averages, the annual average concentration for any year of the assessment period exceeds the criteria. To be used to determine whether a water should be assessed further for human-health impacts, data must meet the requirements of paragraphs (2), (3), (6), and (7) in rule 62-303.320. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Use of the statistical "methodology described in [proposed Rule] 62-303.320," Florida Administrative Code, is not only appropriate (as discussed above) for making "planning list" determinations based upon "[e]xceedances of [a]quatic [l]ife- [b]ased [c]riteria" and "water quality criteria for bacteriological quality," it is also a reasonable way to determine whether a water should "be placed on the planning list for drinking water use support" based upon exceedances of "applicable Class I water quality criteria" (as Subsection (1)(a) of proposed Rule 62-303.380, Florida Administrative Code, provides) and to determine whether a water should "be placed on the planning list for assessment of the threat to human health" based upon exceedances of other "human-health based criteria expressed as maximums" (as Subsection (2)(a) of the proposed Rule 62-303.380, Florida Administrative Code, provides). Subsection (1)(b) was included in proposed Rule 62- 303.380, Florida Administrative Code, because the TAC and Department staff wanted "some other way," besides having the minimum number of exceedances of "applicable Class I water quality criteria" required by Subsection (1)(a) of the proposed rule, for a Class I water to qualify for "place[ment] on the planning list for drinking water use support." Looking at the costs necessary for public water systems to treat surface water,56 as Subsection (1)(b) of proposed Rule 62-303.380, Florida Administrative Code, allows, is a reasonable alternative means of determining whether a Class I water should be "placed on the planning list for drinking water use support." Under Subsection (1)(b) of proposed Rule 62-303.380, Florida Administrative Code, the cost analysis showing that the requirements for listing have been met must be provided by the public water system. This burden was placed on the public water system because the Department "does not have the resources to do that assessment on [its] own." The Department cannot be fairly criticized for not including in Subsection (1)(b)1. of proposed Rule 62-303.380, Florida Administrative Code, references to the other contaminants (in addition to blue-green algae) that have "been put on a list by the EPA to be . . . evaluated for future regulations" inasmuch as there are no existing criteria in Chapter 62-302, Florida Administrative Code, specifically relating to these contaminants. Particularly when read together with the third sentence of Subsection (1) of proposed Rule 62-303.300 (which provides that "[i]t should be noted water quality criteria are designed to protect either aquatic life use support, which is addressed in sections 62-303.310-353, or to protect human health, which is addressed in sections 62-303.360-380"), it is clear that the "human health-based criteria" referenced in Subsection (2) of proposed Rule 62-303.380, Florida Administrative Code, are those numerical criteria in Rule Chapter 62-302, Florida Administrative Code, designed to protect human health. While laypersons not familiar with how water quality criteria are established may not be able to determine (by themselves) which of the numerical water quality criteria in Rule Chapter 62-302, Florida Administrative Code, are "human health-based," as that term is used Subsection (2) of proposed Rule 62-303.380, Florida Administrative Code, Department staff charged with the responsibility of making listing decisions will be able to so. "[H]uman health-based criteria" for non-carcinogens are "expressed as maximums" in Rule Chapter 62-302, Florida Administrative Code. "[H]uman health-based criteria" for carcinogens are "expressed as annual averages" in Rule Chapter 62-302, Florida Administrative Code. "Annual average," as that term is used in Rule Chapter 62-302, Florida Administrative Code, is defined therein as "the maximum concentration at average annual flow conditions. (see Section 62-4.020(1), F.A.C.)." Subsection (1) of Rule 62- 4.020, Florida Administrative Code, provides that "[a]verage [a]nnual [f]low "is the long-term harmonic mean flow of the receiving water, or an equivalent flow based on generally accepted scientific procedures in waters for which such a mean cannot be calculated." The "annual mean concentration" is not exactly the same as, but it does "generally approximate" and is "roughly equivalent to," the "maximum concentration at average annual flow conditions." Using "annual mean concentrations" to determine whether there have been exceedances of a "human health-based criteria expressed as annual averages" is a practical approach that makes Subsection (2)(b) of proposed Rule 62-303.380, Florida Administrative Code, more easily "implementable" inasmuch as it obviates the need to calculate the "average annual flow," which is a "fairly complicated" exercise requiring "site-specific flow data" not needed to determine the "annual mean concentration."57 Subsection (2)(b) of proposed Rule 62-303.380, Florida Administrative Code, does not impose any minimum sample size requirements, and it requires only one exceedance of any "human health-based criteri[on] expressed as [an] annual average[]" for a water to be listed. The limitations it places on the data that can be considered (by incorporating by reference the provisions of Subsections (2), (3), (6), and (7) of proposed Rule 62-303.320, Florida Administrative Code, which have been discussed above) are reasonable. Part III: Overview Part III of proposed Rule Chapter 62-303, Florida Administrative Code, contains the following provisions, which describe the "verified list" of impaired waters for which TMDLs will be calculated, how the list will be compiled, and the manner in which waters on the list will be "prioritized" for TMDL development: Proposed Rules 62-303.400, 62-303.420, 62- 303.430, 62-303.440, 62-303.450, 62-303.460, 62-303.470, 62- 303.480, 62-303.500, 62-303.600, 62-303.700, and 62-303.710, Florida Administrative Code. Code Part III: Proposed Rule 62-303.400, Florida Administrative Proposed Rule 62-303.400, Florida Administrative Code, is entitled, "Methodology to Develop the Verified List," and reads as follows: Waters shall be verified as being impaired if they meet the requirements for the planning list in Part II and the additional requirements of sections 62- 303.420-.480. A water body that fails to meet the minimum criteria for surface waters established in Rule 62-302.500, F.A.C.; any of its designated uses, as described in this part; or applicable water quality criteria, as described in this part, shall be determined to be impaired. Additional data and information collected after the development of the planning list will be considered when assessing waters on the planning list, provided it meets the requirements of this chapter. In cases where additional data are needed for waters on the planning list to meet the data sufficiency requirements for the verified list, it is the Department's goal to collect this additional data[58] as part of its watershed management approach, with the data collected during either the same cycle that the water is initially listed on the planning list (within 1 year) or during the subsequent cycle (six years). Except for data used to evaluate historical trends in chlorophyll a or TSIs, the Department shall not use data that are more than 7.5 years old at the time the water segment is proposed for listing on the verified list. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Pursuant to the first sentence of proposed Rule 62- 303.400, Florida Administrative Code, if a water qualifies for placement on the "planning list" under a provision in Part II of the proposed rule chapter that does not have a counterpart in proposed Rules 62-303.420 through 62-303.480, Florida Administrative Code, that water will automatically be "verified as being impaired." Examples of provisions in Part II of the proposed rule chapter that do not have counterparts in proposed Rules 62-303.420 through 62-303.480, Florida Administrative Code, are: the provision in Subsection (3) of proposed Rule 62- 303.330, Florida Administrative Code, that "water segments with at least . . . one failure of the biological integrity standard, Rule 62-302.530(11), shall be included on the planning list for assessment of aquatic life use support"; Subsection (1) of proposed Rule 62-303.370, Florida Administrative Code, which provides that a water will be placed on the "planning list" if it "does not meet applicable Class II water quality criteria for bacteriological quality based upon the methodology described in section 62-303.320," Florida Administrative Code; Subsection (3) of proposed Rule 62-303.370, Florida Administrative Code, which provides that a Class II water will be placed on the "planning list" if it "includes an area that has been approved for shellfish harvesting by the Shellfish Evaluation and Assessment Program, but which has been downgraded from its initial harvesting classification to a more restrictive classification"; and Subsection (1)(b) of proposed Rule 62-303.380, Florida Administrative Code, pursuant to which a water may qualify for "planning list" placement based upon water treatment costs under the circumstances described therein. Waters that are "verified as being impaired," it should be noted, will not automatically qualify for placement on the "verified list." They will still have to be evaluated in light of the provisions (which will be discussed later in greater detail) of proposed Rule 62-303.600, Florida Administrative Code (relating to "pollution control mechanisms") and those of proposed Rules 62-303.700 and 62- 303.710, Florida Administrative Code (which require that the Department identify the "pollutant(s)" and "concentration(s)" that are "causing the impairment" before placing a water on the "verified list"). Of the "minimum criteria for surface waters established in Rule 62-302.500, F.A.C.," the only ones addressed anywhere in proposed Rules 62-303.310 through 62-303.380 and 62- 303.410 through 62-303.480, Florida Administrative Code, are the requirement that surface water not be "acutely toxic" and the requirement that predominantly marine waters not have silver in concentrations above 2.3 micrograms per liter. In determining whether there has been a failure to meet the remaining "minimum criteria," the Department will exercise its "best professional judgment." Like the second sentence of Proposed Rule 62-303.300, Florida Administrative Code, the second sentence of proposed Rule 62-303.400, Florida Administrative Code, incorporates the concept of "independent applicability" by providing that only one of the listed requirements need be met for a water to be deemed "impaired." Neither Subsection (1) of proposed Rule 62-303.400, Florida Administrative Code, nor any other provision in the proposed rule chapter, requires that a water be on the "planning list" as a prerequisite for inclusion on the "verified list." Indeed, a reading of Subsection (3)(c) of proposed Rule 62- 303.500, Florida Administration, the "prioritization" rule, which will be discussed later, leaves no reasonable doubt that, under the proposed rule chapter, a water can be placed on the "verified list" without having first been on the "planning list." The second sentence of Subsection (2) of proposed Rule 62-303.400, Florida Administrative Code, indicates when the Department hopes to be able to collect the "additional data needed for waters on the planning list to meet the [more rigorous] data sufficiency requirements for the verified list," which data the Department pledges, in subsequent provisions of Part III of the proposed rule chapter, will be collected (at some, unspecified time). The Department did not want to create a mandatory timetable for its collection of the "additional data" because it, understandably, wanted to avoid making a commitment that, due to funding shortfalls that might occur in the future, it would not be able to keep.59 If it has the funds to do so, the Department intends to collect the "additional data" within the time frame indicated in the second sentence of proposed Rule 62-303.400, Florida Administrative Code. The Department will not need to collect this "additional data" if the data is collected and presented to the Department by an "interested party" outside the Department. (The proposed rule chapter allows data collected by outside parties to be considered by the Department in making listing decisions, provided the data meets the prescribed quality requirements.) Requiring (as the third and final sentence of Subsection (2) of proposed Rule 62-303.400, Florida Administrative Code, does) that all data relied upon by the Department for placing waters on the "verified list," except for data establishing "historical trends in chlorophyll a or TSIs," under no circumstances be older than "7.5 years old at the time the water segment is proposed for listing on the verified list" is a reasonable requirement designed to avoid final listing decisions based upon outdated data not representative of the water's current conditions. As noted above, the TAC recommended that listing decisions be based upon data no older than five years old. Wanting to "capture as much data for the assessment process" as reasonably possible, Department staff determined that the appropriate maximum age of data should be two and half years older than that recommended by the TAC (the two and a half years representing the amount of time it could take to "do additional data collection" following the creation of the "planning list"). Part III: Proposed Rule 62-303.410, Florida Administrative Code Proposed Rule 62-303.410, Florida Administrative Code, is entitled, "Determination of Aquatic Life Use Support," and provides as follows: Failure to meet any of the metrics used to determine aquatic life use support listed in sections 62-303.420-.450 shall constitute verification that there is an impairment of the designated use for propagation and maintenance of a healthy, well-balanced population of fish and wildlife. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Like proposed Rule 62-303.310, Florida Administrative Code, its analogue in Part II of the proposed rule chapter, proposed Rule 62-303.410, Florida Administrative Code, incorporates the concept of "independent applicability." A failure of any of the "metrics" referenced in the proposed rule will result in "verification" of impairment. Code Part III: Proposed Rule 62-303.420, Florida Administrative Proposed Rule 62-303.420, Florida Administrative Code, the counterpart of proposed Rule 62-303.320, Florida Administrative Code, establishes a reasonable statistical method, involving binomial distribution analysis, to verify impairment based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" due to pollutant discharges. It reads as follows: Exceedances of Aquatic Life-Based Water Quality Criteria The Department shall reexamine the data used in rule 62-303.320 to determine exceedances of water quality criteria. If the exceedances are not due to pollutant discharges and reflect either physical alterations of the water body that cannot be abated or natural background conditions, the water shall not be listed on the verified list. In such cases, the Department shall note for the record why the water was not listed and provide the basis for its determination that the exceedances were not due to pollutant discharges. If the Department cannot clearly establish that the exceedances are due to natural background or physical alterations of the water body but the Department believes the exceedances are not due to pollutant discharges, it is the Department's intent to determine whether aquatic life use support is impaired through the use of bioassessment procedures referenced in section 62-303.330. The water body or segment shall not be included on the verified list for the parameter of concern if two or more independent bioassessments are conducted and no failures are reported. To be treated as independent bioassessments, they must be conducted at least two months apart. If the water was listed on the planning list and there were insufficient data from the last five years preceding the planning list assessment to meet the data distribution requirements of section 303.320(4) and to meet a minimum sample size for verification of twenty samples, additional data will be collected as needed to provide a minimum sample size of twenty. Once these additional data are collected, the Department shall re-evaluate the data using the approach outlined in rule 62- 303.320(1), but using Table 2, which provides the number of exceedances that indicate a minimum of a 10% exceedance frequency with a minimum of a 90% confidence level using a binomial distribution. The Department shall limit the analysis to data collected during the five years preceding the planning list assessment and the additional data collected pursuant to this paragraph. Table 2: Verified List Minimum number of measured exceedances needed to put a water on the Planning list with at least 90% confidence that the actual exceedance rate is greater than or equal to ten percent. Sample Are listed if they Sizes have at least this From To # of exceedances 20 25 5 26 32 6 33 40 7 41 47 8 48 55 9 56 63 10 64 71 11 72 79 12 80 88 13 89 96 14 97 104 15 105 113 16 114 121 17 122 130 18 131 138 19 139 147 20 148 156 21 157 164 22 165 173 23 174 182 24 183 191 25 192 199 26 200 208 27 209 217 28 218 226 29 227 235 30 236 244 31 245 253 32 254 262 33 263 270 34 271 279 35 280 288 36 289 297 37 298 306 38 307 315 39 316 324 40 325 333 41 334 343 42 344 352 43 353 361 44 362 370 45 371 379 46 380 388 47 389 397 48 398 406 49 407 415 50 416 424 51 425 434 52 435 443 53 444 452 54 453 461 55 462 470 56 471 479 57 480 489 58 490 498 59 499 500 60 (3) If the water was placed on the planning list based on worst case values used to represent multiple samples taken during a seven day period, the Department shall evaluate whether the worst case value should be excluded from the analysis pursuant to subsections (4) and (5). If the worst case value should not be used, the Department shall then re-evaluate the data following the methodology in rule 62-303.420(2), using the more representative worst case value or, if all valid values are below acutely toxic levels, the median value. If the water was listed on the planning list based on exceedances of water quality criteria for metals, the metals data shall be validated to determine whether the quality assurance requirements of rule 62- 303.320(7) are met and whether the sample was both collected and analyzed using clean techniques, if the use of clean techniques is appropriate. If any data cannot be validated, the Department shall re-evaluate the remaining valid data using the methodology in rule 62-303.420(2), excluding any data that cannot be validated. Values that exceed possible physical or chemical measurement constraints (pH greater than 14, for example) or that represent data transcription errors, outliers the Department determines are not valid measures of water quality, water quality criteria exceedances due solely to violations of specific effluent limitations contained in state permits authorizing discharges to surface waters, water quality criteria exceedances within permitted mixing zones for those parameters for which the mixing zones are in effect, and water quality data collected following contaminant spills, discharges due to upsets or bypasses from permitted facilities, or rainfall in excess of the 25-year, 24-hour storm, shall be excluded from the assessment. However, the Department shall note for the record that the data were excluded and explain why they were excluded. Once the additional data review is completed pursuant to paragraphs (1) through (5), the Department shall re-evaluate the data and shall include waters on the verified list that meet the criteria in rules 62-303.420(2) or 62-303.320(5)(b). Specific Authority: 403.061, 403.067, FS. Law Implemented: 403.021(11), 403.062, 403.067, FS. History -- New The TMDL program is intended to address only water quality impairment resulting from pollutant discharges (from point or non-point sources), as is made clear by a reading of Section 403.067, Florida Statutes, particularly Subsection 6(a)2. thereof (which, as noted above, provides that, "[f]or waters determined to be impaired due solely to factors other than point and nonpoint sources of pollution, no maximum daily load will be required"). Subsection (1)(a) of proposed Rule 62- 303.420(1)(a), Florida Administrative Code, is in keeping with this intent. Subsection (1)(b) of proposed Rule 62-303.420, Florida Administrative Code, should be read together with Subsection (1)(a) of the proposed rule. The "physical alterations of the water body" referred to in Subsection (1)(b) are the same type of "physical alterations" referred to in Subsection (1)(a), to wit: "physical alterations of the water body that cannot be abated." "Best professional judgment" will be used by the Department in determining, as it must under Subsection (1) of proposed Rule 62-303.420, Florida Administrative Code, whether or not exceedances are due to pollutant discharges. If the Department, exercising its "best professional judgment," finds that there is not proof "clearly establish[ing] that the exceedances are due to natural background or physical alterations of the water body but the Department believes the exceedances are not due to pollutant discharges," the Department, pursuant to Subsection (1)(b) of proposed Rule 62- 303.420, Florida Administrative Code, will determine whether the water in question should be "verified as impaired" for aquatic life use support by relying on "[b]iological [a]ssessment[s]" conducted in accordance with the procedures set forth in proposed Rule 62-303.330, Florida Administrative Code (which, among other things, prohibit reliance on "[b]iological [a]ssessment[s]" based on "data older than ten years"). The results of these "[b]iological [a]ssessment[s]" will not make the Department any better able to "answer the question of whether natural background or physical alterations were responsible for [the] exceedances," but, as noted above, it will enable the Department to make a more informed decision about the overall ability of the water to sustain aquatic life. Subsection (1)(b) of proposed Rule 62-303.420, Florida Administrative Code, reasonably provides that the water will not be "verified as impaired" for aquatic life use support if there have been two or more "[b]iological [a]ssessment[s]" conducted at least two months apart over the last ten years and "no failures [have been] reported." That a water has "passe[d]" these "[b]iological [a]ssessment[s]" establishes "that aquatic life use support is being maintained" and, under such circumstances, it would be inappropriate to include that water on the "verified list." Looking at just the data "from the last five years preceding the planning list assessment," as the first sentence of Subsection (2) of proposed Rule 62-303.420, Florida Administrative Code, requires the Department to do, rather than all of the data supporting the placement of the water in question on the "planning list," regardless of when the data was collected, makes sense because, to properly discharge its responsibilities under Section 403.067, Florida Statutes, the Department must ascertain what the current overall condition of the water in question is. As noted above, Subsection (2) of proposed Rule 62- 303.420, Florida Administrative Code, requires a "minimum sample size for verification [of impairment based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria]" of twenty samples," with no exceptions. While this is more than the number of samples required for "planning list" compilation purposes under proposed Rule 62-303.320, Florida Administrative Code, it "is a very small number of samples relative to the [number of] samples that [the Department] would need to take to do a TMDL." Furthermore, unlike any provision in proposed Rule 62-303.320, Florida Administrative Code, Subsection (2) of proposed Rule 62-303.420, Florida Administrative Code, provides that, if a water (on the "planning list") lacks the required minimum number of samples, the "additional data" needed to meet the minimum sample requirement "will be collected" (at some unspecified time in the future). Because these additional samples "will be collected," the requirement of proposed Rule 62-303.420, Florida Administrative Code, that there be a minimum of 20 samples should not prevent deserving waters from ultimately being "verified as impaired" under the proposed rule (although it may serve to delay such "verification"). Such delay would occur if a water on the "planning list" had five or more exceedances within the "last five years preceding the planning list assessment" (five being the minimum number of exceedances required for "verification" under proposed Rule 62- 303.420, Florida Administrative Code), but these exceedances were based on fewer than 20 samples. The additional samples that would need to be collected to meet the minimum sample size requirement of Subsection (2) of proposed Rule 62-303.420, Florida Administrative Code, would have no effect on the Department's "verification" determination, even if these samples yielded no exceedances, given that proposed Rule 62-303.420, Florida Administrative Code, does not contain any provision comparable to Subsection (3) of Rule 62-303.320, Florida Administrative Code, providing that, under certain circumstances, "more recent data" may render "older data" unusable.60 The water would qualify for "verification" regardless of what the additional samples revealed. That is not to say, however, that taking these additional samples would serve no useful purpose. Data derived from these additional collection efforts (shedding light on the severity of the water quality problem) could be used by the Department to help it "establish priority rankings and schedules by which water bodies or segments will be subjected to total maximum daily load calculations," as the Department is required to do pursuant to Subsection (4) of Section 403.067, Florida Statutes. The "calculations [reflected in the table, Table 2, which is a part of Subsection (2) of proposed Rule 62-303.420, Florida Administrative Code] are correct." They are based on "a minimum of a 10% exceedance frequency with a minimum of a 90% confidence level using a binomial distribution." As noted above, the Department did not act unreasonably in selecting this "exceedance frequency" and "confidence level" for use in determining which waters should be "verified as impaired" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria." Subsection (4) of proposed Rule 62-303.420, Florida Administrative Code, imposes reasonable quality assurance requirements that must be met in order for "metals data" to be considered "valid" for purposes of determining whether a water has the minimum number of exceedances needed to be "verified as impaired" under the proposed rule. It requires that "Method 1669"-permitted procedures be used only where these procedures are "appropriate." Determining the appropriateness of these procedures in a particular case will require the Department to exercise its "best professional judgment," taking into consideration the amount of the metal in question needed to violate the applicable water quality criterion, in relation to the amount of contamination that could be expected to occur during sample collection and analysis if conventional techniques were used. Doing so should result in "Method 1669"-permitted procedures being deemed "appropriate" in only a few circumstances: when a water is being tested to determine if it exceeds the applicable criterion for mercury, and when testing low hardness waters61 for exceedances of the applicable criterion for cadmium and lead. It is necessary to use "Method 1669"-permitted procedures in these instances to prevent test results that are tainted by contamination occurring during sample collection and analysis. Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, reasonably excludes other data from the "verification" process. It contains the same exclusions that pursuant to Subsection (6) of proposed Rule 62-303.320, Florida Administrative Code, apply in determining whether a water should be placed on the "planning list" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" ("[v]alues that exceed possible physical or chemical measurement constraints (pH greater than 14, for example) or that represent data transcription errors, [and] outliers the Department determines are not valid measures of water quality"), plus additional exclusions. Among the additional types of data that will be excluded from consideration under Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, are "exceedances due solely to violations of specific effluent limitations contained in state permits authorizing discharges to surface waters." Permit violations, by themselves, can cause water quality impairment; however, as the Department has reasonably determined, the quickest and most efficient way to deal with such impairment is to take enforcement action against the offending permittee. To take the time and to expend the funds to develop and implement a TMDL62 to address the problem, instead of taking enforcement action, would not only be unwise and an imprudent use of the not unlimited resources available to combat poor surface water quality in this state, but would also be inconsistent with the expression of legislative intent in Subsection (4) of Section 403.067, Florida Statutes, that the TMDL program not be utilized to bring a water into compliance with water quality standards where "technology-based effluent limitations [or] other pollution control programs under local, state, or federal authority" are sufficient to achieve this result. It is true that the Department has not stopped, through enforcement, all permit violations and that, as Mr. Joyner acknowledged during his testimony at the final hearing, "there are certain cases out there where there are chronic violations of permits." The appropriate response to this situation, however, is for the Department to step up its enforcement efforts, not for it to develop and implement TMDLs for those waters that, but for these violations, would not be impaired. (Citizens dissatisfied with the Department's enforcement efforts can themselves take action, pursuant to Section 403.412(2), Florida Statutes, to seek to enjoin permit violations.) It will be "extremely difficult" to know whether exceedances are due solely to permit violations. Because of this, it does not appear likely that the Department "will be using [the permit violation exclusion contained in] proposed [R]ule [62-303.420(5), Florida Administrative Code] very often." Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, will not exclude from consideration all water quality criteria exceedances in mixing zones . Only those exceedances relating to the parameters "for which the mixing zones are in effect" will be excluded. The exclusion of these exceedances is appropriate inasmuch as, pursuant to the Department's existing rules establishing the state's water quality standards (which the Legislature made clear, in Subsections (9) and (10) of Section 403.067, Florida Statutes, it did not, by enacting Section 403.067, intend to alter or limit), these exceedances are permitted and not considered to be violations of water quality standards. To the extent that there may exist "administratively- continued" permits (that is, permits that remain in effect while a renewal application is pending, regardless of their expiration date) which provide for outdated "mixing zones," this problem should be addressed through the permitting process, not the TMDL program. A "contaminant spill," as that term is used in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, is a short-term, unpermitted discharge [of contaminants63] to surface waters." (See Subsection (16) of proposed Rule 62-303.200, Florida Administrative Code, recited above, which defines "spill," as it is used in the proposed rule chapter). It is well within the bounds of reason to exclude from consideration (as Subsection (5) of proposed Rule 62- 303.420, Florida Statutes, indicates the Department will do in deciding whether a water should be "verified as being impaired" under the proposed rule) data collected in such proximity in time to a "contaminant spill" that it reflects only the temporary effects of that "short-term" event (which are best addressed by the Department taking immediate action), rather than reflecting a chronic water quality problem of the type the TMDL program is designed to help remedy. In deciding whether this exclusion applies in a particular case, the Department will need to exercise its "best professional judgment" to determine whether the post-"contaminant spill" data reflects a "short- term" water quality problem attributable to the "spill" (in which case the exclusion will apply) or whether, instead, it reflects a chronic problem (in which case the exclusion will not apply). "Bypass" is defined in Subsection (4) of Rule 62- 620.200, Florida Administrative Code, as "the intentional diversion of waste streams from any portion of a treatment works." "Upset" is defined in Subsection (50) of Rule 62- 620.200, Florida Administrative Code, as follows: "Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, careless or improper operation. An upset constitutes an affirmative defense to an action brought for noncompliance with technology based permit effluent limitations if the requirements of upset provisions of Rule 62-620.610, F.A.C., are met. The "upset provisions of Rule 62-620.610, F.A.C." are as follows: (23) Upset Provisions. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that: An upset occurred and that the permittee can identify the cause(s) of the upset; The permitted facility was at the time being properly operated; The permittee submitted notice of the upset as required in condition (20) of this permit; and The permittee complied with any remedial measures required under condition (5) of this permit. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof. Before an enforcement proceeding is instituted, no representation made during the Department review of a claim that noncompliance was caused by an upset is final agency action subject to judicial review. Rule 62-620.610, Florida Administrative Code, also contains "[b]ypass [p]rovisions," which provide as follows: (22) Bypass Provisions. Bypass is prohibited, and the Department may take enforcement action against a permittee for bypass, unless the permittee affirmatively demonstrates that: Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated waste, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and The permittee submitted notices as required under condition (22)(b) of this permit. If the permittee knows in advance of the need for a bypass, it shall submit prior notice to the Department, if possible at least 10 days before the date of the bypass. The permittee shall submit notice of an unanticipated bypass within 24 hours of learning about the bypass as required in condition (20) of this permit. A notice shall include a description of the bypass and its cause; the period of the bypass, including exact dates and times; if the bypass has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent recurrence of the bypass. The Department shall approve an anticipated bypass, after considering its adverse effect, if the permittee demonstrates that it will meet the three conditions listed in condition (22)(a)1. through 3. of this permit. A permittee may allow any bypass to occur which does not cause reclaimed water or effluent limitations to be exceeded if it is for essential maintenance to assure efficient operation. These bypasses are not subject to the provision of condition (22)(a) through (c) of this permit. The "bypasses" to which the Department refers in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, are those that are not prohibited (as Mr. Joyner testified and is evidenced by the grouping of "bypasses" in the same provision with "upsets" and by the fact that there is another provision in Subsection (5) of the proposed rule that deals with permit violations). Since these types of bypasses, as well as upsets, are exceptional events that, under the Department's existing rules, are allowed to occur without the permittee being guilty of a permit violation, it is reasonable, in verifying impairment under proposed Rule 62-303.420, Florida Administrative Code, to discount data tainted by their occurrence, which reflect atypical conditions resulting from legally permissible discharges. The "25-year, 24-hour storm" exclusion was included in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, in response to the TAC's recommendation that the proposed rule "exclude data from extreme storm events." The "25-year, 24-hour storm" is "commonly used in the regulatory context as a dividing line between extremely large rainfall events and less extreme events." It is a rainfall event (or as one witness, the chief of the Department's Bureau of Watershed Management, Eric Livingston, put it, a "gully washer") that produces an amount of rainfall within 24 hours that is likely to be exceeded on the average only once in 25 years. In Florida, that amount is anywhere from about eight to 11 inches, depending on location. Because a "25-year, 24-hour storm" is an extraordinary rainfall event that creates abnormal conditions in affected waters, there is reasonable justification for the Department's not considering, in the "verification" process under proposed Rule 62-303.420, Florida Administrative Code, "25-year, 24-hour storm"-impacted data. This should result in the exclusion of very little data. Data collected following less severe rainfall events (of which there are many in Florida)64 will be unaffected by the "25- year, 24-hour storm" exclusion in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code. Code Part III: Proposed Rule 62-303.430, Florida Administrative Proposed Rule 62-303.430, Florida Administrative Code, the counterpart of proposed Rule 62-303.330, Florida Administrative Code, establishes a reasonable non-statistical approach, involving "[b]iological [a]ssessment," to be used as an alternative to the statistical method described in proposed Rule 62-303.420, Florida Administrative Code, in verifying aquatic life use support impairment. Proposed Rule 62-303.430, Florida Administrative Code, reads as follows: Biological Impairment All bioassessments used to list a water on the verified list shall be conducted in accordance with Chapter 62-160, F.A.C., including Department-approved Standard Operating Procedures. To be used for placing waters on the verified list, any bioassessments conducted before the adoption of applicable SOPs for such bioassessments as part of Chapter 62-160 shall substantially comply with the subsequent SOPs. If the water was listed on the planning list based on bioassessment results, the water shall be determined to be biologically impaired if there were two or more failed bioassessments within the five years preceding the planning list assessment. If there were less than two failed bioassessments during the last five years preceding the planning list assessment the Department will conduct an additional bioassessment. If the previous failed bioassessment was a BioRecon, then an SCI will be conducted. Failure of this additional bioassessment shall constitute verification that the water is biologically impaired. If the water was listed on the planning list based on other information specified in rule 62-303.330(4) indicating biological impairment, the Department will conduct a bioassessment in the water segment, conducted in accordance with the methodology in rule 62-303.330, to verify whether the water is impaired. For streams, the bioassessment shall be an SCI. Failure of this bioassessment shall constitute verification that the water is biologically impaired. Following verification that a water is biologically impaired, a water shall be included on the verified list for biological impairment if: There are water quality data reasonably demonstrating the particular pollutant(s) causing the impairment and the concentration of the pollutant(s); and One of the following demonstrations is made: if there is a numeric criterion for the specified pollutant(s) in Chapter 62-302, F.A.C., but the criterion is met, an identification of the specific factors that reasonably demonstrate why the numeric criterion is not adequate to protect water quality and how the specific pollutant is causing the impairment, or if there is not a numeric criterion for the specified pollutant(s) in Chapter 62- 302, F.A.C., an identification of the specific factors that reasonably demonstrate how the particular pollutants are associated with the observed biological effect. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Subsection (1) of proposed Rule 62-303.430, Florida Administrative Code, was written in anticipation of the "adoption of applicable SOPs" for BioRecons, SCIs, and LCIs "as part of [Rule] Chapter 62-160," Florida Administrative Code, subsequent to the adoption of the proposed rule chapter. As noted above, at the time of the final hearing in these cases, the Department was in the process of engaging in rulemaking to incorporate in Rule Chapter 62-160, Florida Administrative Code, the SOPs for BioRecons, SCIs, and LCIs that Department personnel currently use to conduct these "[b]iological [a]ssessment[s]." Until the rulemaking process is completed and any amendments to Rule Chapter 62-160, Florida Administrative Code, become effective,65 to be "used to list a water on the verified list" pursuant to Subsection (1) of proposed Rule 62-303.430, Florida Administrative Code, "[b]iological [a]assessment[s]" need meet only the quality assurance requirements of the pre-amendment version of Rule Chapter 62-160 (which does not include SOPs for BioRecons, SCIs and LCIs). Once the amendments become effective, however, "[b]iological [a]assessment[s]," both pre- and post-amendment, will have to have been conducted in substantial compliance with the applicable SOPs included in the new version of Rule Chapter 62-160. No "[b]iological [a]assessment" will be rejected under Subsection (1) of proposed Rule 62-303.430, Florida Administrative Code, because it fails to comply with an SOP that, at the time of the "verification" determination, has not been made a part of the Department's rules. The TAC-approved requirement of Subsection (2) of proposed Rule 62-303.430, Florida Administrative Code, that there be at least "two failed bioassessments during the last five years preceding the planning list assessment" (as opposed to a longer period of time) in order for a water to be "verified as being [biologically] impaired," without the need to conduct another "[b]iological [a]assessment," is reasonably designed to avoid listing decisions that are based upon test results not representative of the existing overall biological condition of the water in question. Two such failed "[b]iological [a]assessment[s]" will provide the Department with a greater degree of assurance that the water truly suffers from "biological impairment" than it would have if only one failed "[b]iological [a]assessment" was required. If there are fewer than "two failed bioassessments during the last five years preceding the planning list assessment," Subsection (2) of proposed Rule 62-303.430, Florida Administrative Code, provides that the Department will conduct another "[b]iological [a]ssessment" to determine whether the water should be "verified as being [biologically] impaired," and failure of this additional "[b]iological [a]assessment" will constitute "verification that the water is biologically impaired." The requirement that there be another failed "[b]iological [a]assessment" to confirm "biological impairment" before a water is "verified as being [biologically] impaired" under Subsection (2) of proposed Rule 62-303.430, Florida Administrative Code, is scientifically prudent, particularly in those cases where the water was placed on the "planning list" based upon a "[b]iological [a]ssessment" conducted more than five years earlier. The failure of this additional "[b]iological [a]ssessment" is enough to get the water "verified as being [biologically] impaired" even if there were no failed "[b]iological [a]ssessment[s]" in the "last five years preceding the planning list assessment." Inasmuch as the SCI, compared to the BioRecon, is a more comprehensive and rigorous test, it is reasonable to require (as Subsection (2) of proposed Rule 62-303.430, Florida Administrative Code, does) that, in the case of a stream placed on the "planning list" as a result of a failed BioRecon, the additional "[b]iological [a]ssessment" be an SCI, not a BioRecon, and to also require (as Subsection (3) of proposed Rule 62-303.430, Florida Administrative Code, does) that an SCI, rather than a BioRecon, be conducted where a stream has been placed on the "planning list" based upon "other information specified in rule 62-303.330(4) indicating biological impairment." Until such time as the Department develops a rapid bioassessment protocol for estuaries, where the Department is required in Part II of the proposed rule chapter to conduct an additional "[b]iological [a]ssessment, the Department intends to meet this obligation by engaging in "biological integrity standard" testing. TMDLs are pollutant-specific. If a water is "verified as [biologically] impaired," but the Department is not able to identify a particular pollutant as the cause of the impairment, a TMDL cannot be developed. See Section 403.031(21), Florida Statutes (to establish TMDL it is necessary to calculate the "maximum amount of a pollutant that a water body or water segment can assimilate from all sources without exceeding water quality standards"); and Section 403.067(6)(a)2., Florida Statutes ("The total maximum daily load calculation shall establish the amount of a pollutant that a water body or water body segment may receive from all sources without exceeding water quality standards"). Accordingly, as noted above, in Subsection (3)(c) of Section 403.067, Florida Statutes, the Legislature has imposed the following perquisites to the Department listing, on its "updated list" of waters for which TMDLs will be calculated, those waters deemed to be impaired based upon "non-attainment [of] biological criteria": If the department has adopted a rule establishing a numerical criterion for a particular pollutant, a narrative or biological criterion may not be the basis for determining an impairment in connection with that pollutant unless the department identifies specific factors as to why the numerical criterion is not adequate to protect water quality. If water quality non-attainment is based on narrative or biological criteria, the specific factors concerning particular pollutants shall be identified prior to a total maximum daily load being developed for those criteria for that surface water or surface water segment. Furthermore, Subsection (4) of Section 403.067, Florida Statutes, provides that, if a water is to placed on the "updated list" on any grounds, the Department "must specify the particular pollutants causing the impairment and the concentration of those pollutants causing the impairment relative to the water quality standard." The requirements of Subsection (4) of proposed Rule 62-303.430, Florida Administrative Code, are consistent with these statutory mandates. Proposed Rule 62-303.430, Florida Statutes, does not address waters placed on the "planning list" based upon a failure of the "biological integrity standard" set forth in Subsection (11) of Rule 62-302.530, Florida Administrative Code. Therefore, by operation of proposed Rule 62-303.400, Florida Administrative Code, waters meeting the minimum requirements for "planning list" placement based upon failure of the "biological integrity standard" (a single failure within the ten-year period preceding the "planning list" assessment) will automatically be "verified as being impaired." This is a less stringent "verification" requirement than the Department adopted in proposed Rule 62-303.430, Florida Administrative Code, for "verification" of waters placed on the "planning list" based upon a failed BioRecon, SCI, or LCI. While the results of BioRecons, SCIs, and LCIs are more accurate indicators of "biological impairment" than are the results of "biological integrity standard" testing, the Department's decision to make it more difficult for a water to be "verified as being impaired" if it was placed on the "planning list" based upon a failed BioRecon, SCI, or LCI (as opposed to a failure of the "biological integrity standard") is reasonably justified inasmuch as the "biological integrity standard" is one of the water quality criteria that have been established by the Department in Rule 62-302.530, Florida Administrative Code, whereas, in contrast, neither the BioRecon, SCI, nor LCI are a part of the state's water quality standards. Code Part III: Proposed Rule 62-303.440, Florida Administrative Proposed Rule 62-303.440, Florida Administrative Code, the counterpart of proposed Rule 62-303.340, Florida Administrative Code, prescribes another reasonable method, that is not statistically-based, to verify aquatic life use support impairment. It reads as follows: : Toxicity A water segment shall be verified as impaired due to surface water toxicity in the receiving water body if: the water segment was listed on the planning list based on acute toxicity data, or the water segment was listed on the planning list based on chronic toxicity data and the impairment is confirmed with a failed bioassessment that was conducted within six months of a failed chronic toxicity test. For streams, the bioassessment shall be an SCI. Following verification that a water is impaired due to toxicity, a water shall be included on the verified list if the requirements of paragraph 62-303 430(4) are met. Toxicity data collected following contaminant spills, discharges due to upsets or bypasses from permitted facilities, or rainfall in excess of the 25-year, 24-hour storm, shall be excluded from the assessment. However, the Department shall note for the record that the data were excluded and explain why they were excluded. Specific Authority 403.061, 403.067, FS. Law Implemented 403. 062, 403.067, FS. History -- New Pursuant to Subsections (1)(a) and (3) of proposed Rule 62-303.440, Florida Administrative Code, a water will automatically be "verified as impaired" for aquatic life use support if it was placed on the "planning list" on the basis of being "acutely toxic," provided that the data supporting such placement was "not collected following contaminant spills, discharges due to upsets or bypasses from permitted facilities, or rainfall in excess of the 25-year, 24-hour storm." The TAC and Department staff determined that additional testing was not necessary for "verification" under such circumstances because the end point that characterizes "acute toxicity" is so "dramatic" in terms of demonstrating impairment that it would be best to "just go ahead and put [the water] on the list with the two acute [toxicity] failures and start figuring out any potential sources of that impairment." The TAC and Department staff, however, reasonably believed that, because "chronic toxicity tests, in contrast, are measuring fairly subtle changes in a lab test organism" and there is "a very long history within the NPDES program of people questioning the results of the chronic toxicity test," before a water is "verified as being impaired" due to "chronic toxicity," the impairment should be "confirmed with a bioassessment that was conducted within six months of a failed chronic toxicity test"66 (as Subsection (1)(b) of proposed Rule 62-303.440, Florida Administrative Code, provides). It is reasonable to require that the bioassessment, in the case of a stream, be an SCI, rather than a BioRecon, because, as noted above, of the two, the former is the more comprehensive and rigorous test. The requirements of Subsection (2) of proposed Rule 62-303.440, Florida Administrative Code, are consistent with the provisions of the Subsections (3)(c) and (4) of Section 403.067, Florida Statutes. It may be difficult to identify the pollutant causing the impairment inasmuch as toxicity tests are not designed to yield such information. The rationale for excluding, in the assessment process described in proposed Rule 62-303.440, Florida Administrative Code, "data collected following contaminant spills, discharges due to upsets or bypasses from permitted facilities, or rainfall in excess of the 25-year, 24-hour storm" (as Subsection (3) of the proposed rule does) is the same, justifiable rationale (discussed above) supporting the exclusion of such data in the assessment of impairment under proposed Rule 62-303.420, Florida Administrative Code. Code Part III: Proposed Rule 62-303.450, Florida Administrative Proposed Rule 62-303.450, Florida Administrative Code, the counterpart of proposed Rules 62-303.350 through 62- 303.353, Florida Administrative Code, provides other reasonable ways, not based upon statistics, for waters to be "verified as [being] impaired" for aquatic life use support. It reads as follows: Interpretation of Narrative Nutrient Criteria. A water shall be placed on the verified list for impairment due to nutrients if there are sufficient data from the last five years preceding the planning list assessment combined with historical data (if needed to establish historical chlorophyll a levels or historical TSIs), to meet the data sufficiency requirements of rule 62- 303.350(2). If there are insufficient data, additional data shall be collected as needed to meet the requirements. Once these additional data are collected, the Department shall re-evaluate the data using the thresholds provided in rule 62-303.351- .353, for streams, lakes, and estuaries, respectively, or alternative, site-specific thresholds that more accurately reflect conditions beyond which an imbalance in flora or fauna occurs in the water segment. In any case, the Department shall limit its analysis to the use of data collected during the five years preceding the planning list assessment and the additional data collected in the second phase. If alternative thresholds are used for the analysis, the Department shall provide the thresholds for the record and document how the alternative threshold better represents conditions beyond which an imbalance in flora or fauna is expected to occur. If the water was listed on the planning list for nutrient enrichment based on other information indicating an imbalance in flora or fauna as provided in Rule 62-303 350(1), the Department shall verify the imbalance before placing the water on the verified list for impairment due to nutrients and shall provide documentation supporting the imbalance in flora or fauna. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The requirement of the first sentence of Subsection (1) of proposed Rule 62-303.450, Florida Administrative Code, that there be sufficient (non-historical) data (as measured against the requirements of Subsection (2) of proposed Rule 62- 303.350, Florida Administrative Code67) "from [just] the last five years preceding the planning list assessment" in order for a "nutrient impair[ed]" water to go directly from the "planning list" to the "verified list" (subject to the provisions of proposed Rules 62-303.600, 62-303.700, and 62-303.710, Florida Administrative Code) is reasonably designed to avoid listing decisions based upon outdated data not representative of the water's current conditions. According to the second and third sentences of Subsection (1) of proposed Rule 62-303.450, Florida Administrative Code, if there is not enough data from this five- year time period, the additional data needed to meet the data sufficiency requirements "will be collected" by the Department, and such additional data, along with the data "from the last five years preceding the planning list assessment," will be evaluated to determine whether one of the applicable thresholds set out in proposed Rules 62-303.351 through 62-303.353, Florida Administrative Code, or an "alternative" threshold established specifically for that water, has been met or exceeded. Deciding whether "alternative, site-specific thresholds" should be used and, if so, what they should be, will involve the exercise of the Department's "best professional judgment," as will the determination as to how, in each case the Department is presented with a water placed on the "planning list for nutrient enrichment based on other information indicating an imbalance in flora or fauna," it should go about "verify[ing] the imbalance," as the Department will be required to do by Subsection (2) of proposed Rule 62-303.450, Florida Administrative Code. In some instances, the Department will only need to thoroughly review the "other information" to "verify the imbalance." In other cases, where the "other information" is not sufficiently detailed, new "information" will need to be obtained. How the Department will proceed in a particular case will depend upon the specific circumstances of that case. Code Part III: Proposed Rule 62-303.460, Florida Administrative Proposed Rule 62-303.460, Florida Administrative Code, the counterpart of proposed Rule 62-303.360, Florida Administrative Code, establishes a reasonable means to determine whether waters should be "verified as [being] impaired" for primary contact and recreation use support. It reads as follows: Primary Contact and Recreation Use Support The Department shall review the data used by the DoH as the basis for bathing area closures, advisories or warnings and verify that the values exceeded the applicable DoH thresholds and the data meet the requirements of Chapter 62-160. If the segment is listed on the planning list based on bathing area closures, advisories, or warnings issued by a local health department or county government, closures, advisories, or warnings based on red tides, rip tides, sewer line breaks, sharks, medical wastes, hurricanes, or other factors not related to chronic discharges of pollutants shall not be included when verifying primary contact and recreation use support. The Department shall then re-evaluate the remaining data using the methodology in rule 62- 303.360(1)(c). Water segments that meet the criteria in rule 62-303.360(1)(c) shall be included on the verified list. If the water segment was listed on the planning list due to exceedances of water quality criteria for bacteriological quality, the Department shall, to the extent practical, evaluate the source of bacteriological contamination and shall verify that the impairment is due to chronic discharges of human-induced bacteriological pollutants before listing the water segment on the verified list. The Department shall take into account the proximity of municipal stormwater outfalls, septic tanks, and domestic wastewater facilities when evaluating potential sources of bacteriological pollutants. For water segments that contain municipal stormwater outfalls, the impairment documented for the segment shall be presumed to be due, at least in part, to chronic discharges of bacteriological pollutants. The Department shall then re-evaluate the data using the methodology in rule 62-303.320(1), excluding any values that are elevated solely due to wildlife. Water segments shall be included on the verified list if they meet the requirements in rule 62-303.420(6). Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The first sentence of Subsection (1) of proposed Rule 62-303.460, Florida Administrative Code, was included in the proposed rule in response to comments made by stakeholders during the rule development process that the Department would be "abdicating [its] authority" if, in determining whether a water was impaired for purposes of TMDL development, it relied solely on action taken by other governmental entities. Department staff agreed that the Department, "as the agency responsible for preparing this list," should at least "review the data used by the DoH as the basis for bathing area closures, advisories or warnings and verify that the values exceeded the applicable DoH thresholds and the data meet the requirements of Chapter 62- 160," Florida Administrative Code. The rationale for the Department not considering bathing area "closures, advisories, or warnings based on red tides, rip tides, sewer line breaks, sharks, medical wastes, hurricanes, or other factors not related to chronic discharges of pollutants . . . when verifying [impairment of] primary contact and recreation use support" (per the second sentence of Subsection (1) of proposed Rule 62-303.460, Florida Administrative Code) is the same, justifiable rationale (discussed above) supporting the exclusions of these closures, advisories, and warnings from consideration in the determination of whether a water should be placed on the "planning list" pursuant to Subsections (1)(b), (1)(c), or (1)(d) of the proposed Rule 62-303.360, Florida Administrative Code. The exclusions set forth in the second sentence of Subsection (1) of proposed Rule 62-303.460, Florida Administrative Code, will have no effect on the "information" or "data" that the Department will be able to consider under any provision in Part III of the proposed rule chapter other than Subsection (1) of proposed Rule 62-303.460. Pursuant to the third and fourth sentences of Subsection (1) of proposed Rule 62-303.460, Florida Administrative Code, after the Department determines, in accordance with the first and second sentences of this subsection of the proposed rule, what bacteriological data-based bathing area closures, advisories, and warnings should be counted, it will determine whether there were a total of at least 21 days of such closures, advisories, and warnings during a calendar year (the number required by Subsection (1)(c) of proposed Rule 62-303.360, Florida Administrative Code, for placement on the "planning list") and, if there were, it will verify the water in question as being impaired for primary contact and recreation use support. This is the only way for a water to be "verified as being impaired" based upon bathing area closures, advisories, or warnings under the proposed rule chapter. The "criteria" set forth in Subsections (1)(b) and (1)(d) of proposed Rule 62-303.360, Florida Administrative Code (unlike the criteria set forth in Subsection (1)(c) of proposed Rule 62-303.360) are not carried forward in proposed Rule 62- 303.460, Florida Administrative Code. Subsection (2) of proposed Rule 62-303.460, Florida Administrative Code, provides another way, based upon a statistical analysis of "exceedances of water quality criteria for bacteriological quality," for a water to be "verified as being impaired" for primary contact and recreation use support. It reasonably requires the Department, in determining whether such impairment exists, to use the same valid statistical methodology (discussed above) that it will use, pursuant to proposed Rule 62-303.420, Florida Administrative Code, to determine whether a water should be "verified as being impaired" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [c]riteria." Under Subsection (2) of proposed Rule 62-303.460, Florida Administrative Code, the Department, to the extent practical, will evaluate the source of an exceedance to make sure that it is "due to chronic discharges of human-induced bacteriological pollutants," and, if such evaluation reveals that the exceedance was "solely due to wildlife," the exceedance will be excluded from the calculation. While it is true that "microbial pollutants from [wildlife] do constitute a public health risk in recreational waters," the purpose of the TMDL program is to control human-induced impairment and, consequently, the Department is not required to develop TMDLs "[f]or waters determined to be impaired due solely to factors other than point and nonpoint sources of pollution." See Section 403.067(6)(a)2., Florida Statutes. Part III: Proposed Rule 62-303.470, Florida Administrative Code Rule 62-303.470, Florida Administrative Code, the counterpart of proposed Rule 62-303.370, Florida Administrative Code, establishes a reasonable means to determine whether waters should be "verified as being impaired" for fish and shellfish consumption use support. It provides as follows: Fish and Shellfish Consumption Use Support In order to be used under this part, the Department shall review the data used by the DoH as the basis for fish consumption advisories and determine whether it meets the following requirements: the advisory is based on the statistical evaluation of fish tissue data from at least twelve fish collected from the specific water segment or water body to be listed, starting one year from the effective date of this rule the data are collected in accordance with DEP SOP FS6000 (General Biological Tissue Sampling) and FS 6200 (Finfish Tissue Sampling), which are incorporated by reference, the sampling entity has established Data Quality Objectives (DQOs) for the sampling, and the data meet the DQOs. Data collected before one year from the effective date of this rule shall substantially comply with the listed SOPs and any subsequently developed DQOs. there are sufficient data from within the last 7.5 years to support the continuation of the advisory. If the segment is listed on the planning list based on fish consumption advisories, waters with fish consumption advisories for pollutants that are no longer legally allowed to be used or discharged shall not be placed on the verified list because the TMDL will be zero for the pollutant. Waters determined to meet the requirements of this section shall be listed on the verified list. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Proposed Rule 62-303.470, Florida Administrative Code, imposes additional requirements only for those waters placed on the "planning list" based upon fish consumption advisories pursuant to Subsection (2) of proposed Rule 62- 303.370, Florida Administrative Code. Waters placed on the "planning list" pursuant to Subsections (1) and (3) of proposed Rule 62-303.370, Florida Administrative Code, are not addressed in the proposed rule (or anywhere else in Part III of the proposed rule chapter). Accordingly, as noted above, these waters will go directly from the "planning list" to the "verified list" (subject to the provisions of proposed Rules 62- 303.600, 62-303.700, and 62-303.710, Florida Administrative Code). The mere fact that a fish consumption advisory is in effect for a water will be enough for that water to qualify for placement on the "planning list" under Subsection (2) of proposed Rule 62-303.370, Florida Administrative Code. The Department will not look beyond the four corners of the advisory at this stage of the "identification of impaired surface waters" process. Proposed Rule 62-303.470, Florida Administrative Code, however, will require the Department, before including the water on the "verified list" based upon the advisory, to conduct such an inquiry and determine the adequacy of the fish tissue data supporting the initial issuance of the advisory and its continuation. Mandating that the Department engage in such an exercise as a prerequisite to verifying impairment based upon a fish consumption advisory is a provident measure in keeping with the Legislature's directive that the TMDL program be "scientifically based." Department staff's intent, in requiring (in Subsection (1)(a) of proposed Rule 62-303.470, Florida Administrative Code) that there be fish tissue data from at least 12 fish, "was to maintain the status quo" and not require any more fish tissue samples than the Department of Health presently uses to determine whether an advisory should be issued. The SOPs incorporated by reference in Subsection (1)(b) of proposed Rule 62-303.470, Florida Administrative Code, contain quality assurance requirements that are essentially the same as those that have been used "for many years" to collect the fish tissue samples upon which fish consumption advisories are based. These SOPs have yet to be incorporated in Rule Chapter 62-160, Florida Administrative Code. Data Quality Objectives are needed for sampling to be scientifically valid. There are presently no Data Quality Objectives in place for the sampling that is done in connection with the Department of Health's fish consumption advisory program. Pursuant to Subsection (1)(b) of proposed Rule 62- 303.470, Florida Administrative Code, after one year from the effective date of the proposed rule, in order for data to be considered in determining data sufficiency questions under the proposed rule, the sampling entity will have to have established Data Quality Objectives for the collection of such data and the data will have to meet, or (in the case of "data collected before one year from the effective date of this rule") substantially comply with, these Data Quality Objectives. As noted above, the majority of fish consumption advisories now in effect were issued based upon fish tissue data collected more than 7.5 years ago that has not been supplemented with updated data. It "will be a huge effort to collect additional data that's less than seven-and-a-half years old" for the waters under these advisories (and on the "planning list" as a result thereof) to determine, in accordance with Subsection (1)(c) of proposed Rule 62-303.470, Florida Administrative Code, whether the continuation of these advisories is warranted. Undertaking this "huge effort," instead of relying on data more than 7.5 years old to make these determinations, is reasonably justified because this 7.5-plus-year-old data that has already been collected may no longer be representative of the current conditions of the waters in question and it therefore is prudent to rely on more recent data. Subsection (1)(c) of proposed Rule 62-303.470, Florida Administrative Code, does not specify the amount of fish tissue data that will be needed in order for the Department to determine that there is sufficient data to "support the continuation of the advisory." The Department will need to exercise its "best professional judgment" on a case-by-case basis in making such sufficiency determinations. Part III: Proposed Rule 62-303.480, Florida Administrative Code Proposed Rule 62-303.480, Florida Administrative Code, the counterpart of proposed Rule 62-303.380, Florida Administrative Code, establishes a reasonable means to determine whether waters should be "verified as being impaired" for the protection of human health. It provides as follows: Drinking Water Use Support and Protection of Human Health If the water segment was listed on the planning list due to exceedances of a human health-based water quality criterion and there were insufficient data from the last five years preceding the planning list assessment to meet the data sufficiency requirements of section 303.320(4), additional data will be collected as needed to meet the requirements. Once these additional data are collected, the Department shall re-evaluate the data using the methodology in rule 62-303.380(2) and limit the analysis to data collected during the five years preceding the planning list assessment and the additional data collected pursuant to this paragraph (not to include data older than 7.5 years). For this analysis, the Department shall exclude any data meeting the requirements of paragraph 303.420(5). The following water segments shall be listed on the verified list: for human health-based criteria expressed as maximums, water segments that meet the requirements in rule 62-303.420(6), or for human health-based criteria expressed as annual averages, water segments that have an annual average that exceeds the applicable criterion. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Proposed Rule 62-303.480, Florida Administrative Code, imposes additional requirements only for those waters placed on the "planning list" for "assessment of the threat to human health" pursuant to Subsection (2) of proposed Rule 62- 303.380, Florida Administrative Code. Notwithstanding that proposed Rule 62-303.480, Florida Administrative Code, is entitled, "Drinking Water Use Support and Protection of Human Health," waters placed on the "planning list" for drinking water use support pursuant to Subsection (1) of proposed Rule 62- 303.380, Florida Administrative Code, are not addressed in the proposed rule (or anywhere else in Part III of the proposed rule chapter). Accordingly, as noted above, these waters will go directly from the "planning list" to the "verified list" (subject to the provisions of proposed Rules 62-303.600, 62- 303.700, and 62-303.710, Florida Administrative Code). Proposed Rule 62-303.480, Florida Administrative Code, reasonably requires the Department, in determining whether a water should be "verified as being impaired" for the protection of human health based upon exceedances of "human health-based criteria expressed as maximums," to use the same valid statistical methodology (discussed above) that it will use, pursuant to proposed Rule 62-303.420, Florida Administrative Code, to determine whether a water should be "verified as being impaired" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [c]riteria." Proposed Rule 62-303.480, Florida Administrative Code, also sets forth an appropriate method for use in determining whether a water should be "verified as being impaired" based upon exceedances of "human health-based criteria expressed as annual averages." Only one exceedance of any "human health-based criteria expressed as an annual average" will be needed for a water to be listed under the proposed rule, the same number needed under Subsection (2)(b) of proposed Rule 62-303.380, Florida Administrative Code, for a water to make the "planning list." Under proposed Rule 62-303.480, Florida Administrative Code, however, unlike under Subsection (2)(b) of proposed Rule 62-303.380, Florida Administrative Code, the data relied upon by the Department will have to meet the "data sufficiency requirements of section [62]-303.320(4)," Florida Administrative Code, and, in addition, data of the type described in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, as well as data collected more than "five years preceding the planning list assessment," will be excluded from the Department's consideration. Code Part III: Proposed Rule 62-303.500, Florida Administrative As noted above, Subsection (4) of Section 403.067, Florida Statutes, directs the Department, "[i]n association with [its preparation of an] updated list [of waters for which TMDLs will be calculated, to] establish priority rankings and schedules by which water bodies or segments will be subjected to total maximum daily load calculations." Proposed Rule 62- 303.500, Florida Administrative Code, explains how the Department will go about carrying out this statutory directive. It reads as follows: When establishing the TMDL development schedule for water segments on the verified list of impaired waters, the Department shall prioritize impaired water segments according to the severity of the impairment and the designated uses of the segment taking into account the most serious water quality problems; most valuable and threatened resources; and risk to human health and aquatic life. Impaired waters shall be prioritized as high, medium, or low priority. The following waters shall be designated high priority: Water segments where the impairment poses a threat to potable water supplies or to human health. Water segments where the impairment is due to a pollutant regulated by the CWA and the pollutant has contributed to the decline or extirpation of a federally listed threatened or endangered species, as indicated in the Federal Register listing the species. The following waters shall be designated low priority: [W]ater segments that are listed before 2010 due to fish consumption advisories for mercury (due to the current insufficient understanding of mercury cycling in the environment). Man-made canals, urban drainage ditches, and other artificial water segments that are listed only due to exceedances of the dissolved oxygen criteria. Water segments that were not on a planning list of impaired waters, but which were identified as impaired during the second phase of the watershed management approach and were included in the verified list, unless the segment meets the criteria in paragraph (2) for high priority. All segments not designated high or low priority shall be medium priority and shall be prioritized based on the following factors: the presence of Outstanding Florida Waters. the presence of water segments that fail to meet more than one designated use. the presence of water segments that exceed an applicable water quality criterion or alternative threshold with a greater than twenty-five percent exceedance frequency with a minimum of a 90 percent confidence level. the presence of water segments that exceed more than one applicable water quality criteria. administrative needs of the TMDL program, including meeting a TMDL development schedule agreed to with EPA, basin priorities related to following the Department's watershed management approach, and the number of administratively continued permits in the basin. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New It is anticipated that most waters on the Department's "updated list" will fall within the "medium priority" category. Subsections (4)(a) through (4)(e) of proposed Rule 62-303.500, Florida Administrative Code, describe those factors (including, among others, the "presence of Outstanding Florida Waters" and "the number of administratively continued permits in the basin," the latter being added "based on input from the Petitioners") that will be taken into account by the Department in prioritizing waters within this "medium priority" category; but nowhere in the proposed rule does the Department specify how much weight each factor will be given relative to the other factors. This is a matter that, in accordance with the TAC's recommendation, will be left to the "best professional judgment" of the Department. "[T]here is a lot known about mercury" and its harmful effects; however, as the Department correctly suggests in Subsection (3)(a) of proposed Rule 62-303.500, Florida Administrative Code, there is not yet a complete understanding of "mercury cycling in the environment" and how mercury works its way up the food chain. "[T]here are a series of projects that are either on the drawing board or in progress now" that, hopefully, upon their conclusion, will give the Department a better and more complete understanding of what the sources of mercury in Florida surface waters are and how mercury "cycles" in the environment and ends up in fish tissue. Until the Department has such an understanding, though, it is reasonable for waters "verified as being impaired" due to fish consumption advisories for mercury to be given a "low priority" designation for purposes of TMDL development (as the Department, in Subsection (3)(a) of proposed Rule 62-303.500, Florida Administrative Code, indicates it will). Code Part III: Proposed Rule 62-303.600, Florida Administrative As noted above, proposed Rule 62-303.600, Florida Administrative Code, like Subsection (5) of proposed Rule 62- 303.100, Florida Administrative Code, is designed to give effect to and make more specific the language in Subsection (4) of Section 403.067, Florida Statutes, that an impaired water may be listed on the Department's "updated list" of waters for which TMDLs will be calculated only "if technology-based effluent limitations and other pollution control programs under local, state, or federal authority, including Everglades restoration activities pursuant to s. 373.4592 and the National Estuary Program, which are designed to restore such waters for the pollutant of concern are not sufficient to result in attainment of applicable surface water quality standards." It reads as follows: Evaluation of Pollution Control Mechanisms Upon determining that a water body is impaired, the Department shall evaluate whether existing or proposed technology- based effluent limitations and other pollution control programs under local, state, or federal authority are sufficient to result in the attainment of applicable water quality standards. If, as a result of the factors set forth in (1), the water segment is expected to attain water quality standards in the future and is expected to make reasonable progress towards attainment of water quality standards by the time the next 303(d) list is scheduled to be submitted to EPA,[68] the segment shall not be listed on the verified list. The Department shall document the basis for its decision, noting any proposed pollution control mechanisms and expected improvements in water quality that provide reasonable assurance that the water segment will attain applicable water quality standards. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New It is beyond reasonable debate that, pursuant to Subsection (4) of Section 403.067, Florida Statutes, before the Department may include impaired waters on the "updated list" of waters for TMDLs will be calculated, it must evaluate whether "technology-based effluent limitations and other pollution control programs" are sufficient for water quality standards in these waters to be attained in the future. (To construe the statute as requiring the Department to simply look back, and not forward into the future, in conducting its mandated evaluation of "pollution control programs" would render meaningless the language in the statute directing the Department to conduct such an evaluation after having determined that these waters are impaired.69 As Mr. Joyner testified at the final hearing in explaining what led Department staff "to conclude that [the Department] should be considering future achievement of water quality standards or future implementation of such [pollution control] programs": [I]t [Subsection (4) of Section 403.067, Florida Statutes] basically requires two findings. It's impaired and these things won't fix the problem. If the "won't fix the problem" required it to be fixed right now in the present tense [to avoid listing], then it couldn't be impaired. So it would just be an illogical construction of having two requirements in the statute.) Proposed Rule 62-303.600, Florida Administrative Code, does not specify when "in the future" water quality attainment resulting from an existing or proposed "pollution control program" must be expected to occur in order for a presently impaired water to not be listed; but neither does Subsection (4) of Section 403.067, Florida Statutes, provide such specificity. Indeed, the statute's silence on the matter was the very reason that Department staff did "not set a time frame for [expected] compliance with water quality standards." Rather than "set[ting] such a time frame," Department staff took other measures "to address the open nature of the statute" and limit the discretion the Legislature granted the Department to exclude presently impaired waters from the "updated list" based upon there being pollution control programs sufficient to result in these waters attaining water quality standards in the future "for the pollutant of concern." They included language in Subsection (5) of proposed Rule 62-303.100, Florida Administrative Code, and in proposed Rule 62-303.600, Florida Administrative Code, requiring that the Department, before exercising such discretion to exclude a presently impaired water from the "updated list," have "reasonable assurance" that water quality standards will be attained and that "reasonable progress" will be made in attaining these standards within a specified time frame, to wit: "by the time the next 303(d) list is scheduled to be submitted to EPA." "Reasonable assurance" is a term that has a "long history" of use by the Department in various programs,70 including its wastewater permitting program.71 Neither sheer speculation that a pollution control program will result in future water quality attainment, nor mere promises to that effect, will be sufficient, under Subsection of proposed Rule 62-303.100, Florida Administrative Code, and proposed Rule 62-303.600, Florida Administrative Code, to exclude an impaired water from the "updated list." The Department will need to examine and analyze the specific characteristics of each impaired water, as well as the particular pollution control program in question, including its record of success and/or failure, if any, before determining (through the use of its "best professional judgment") whether there is the "reasonable assurance" required by these proposed rule provisions. How much time it will take for an impaired water to attain water quality standards will depend on various water- specific factors, including the size of the water body, the size of the watershed, and whether there are pollutants stored in the sediment. The particular circumstances of each case, therefore, will dictate what constitutes "reasonable progress72 towards attainment of water quality standards by the time the next 303(d) list is scheduled to be submitted to EPA," within the meaning of Subsection (5) of proposed Rule 62-303.100, Florida Administrative Code, and proposed Rule 62-303.600, Florida Administrative Code. Because of the case-specific factors involved in determining "reasonable assurance" and "reasonable progress," it was not practicable for Department staff to specify in Subsection (5) of proposed Rule 62-303.100, Florida Administrative Code, and in proposed Rule 62-303.600, Florida Administrative Code, exactly what would be needed to be shown in each case to establish "reasonable assurance" and "reasonable progress." At the April 26, 2001, rule adoption hearing, Department staff proposed an amendment to proposed Rule 62- 303.600, Florida Administrative, to make the proposed rule more specific by adding "a list of elements that needed to be addressed to provide reasonable assurance" and defining "reasonable progress." The amendment, which was opposed by the DACS and regulated interests, was withdrawn before being considered by the ERC because Department staff felt that is was not "quite well thought out enough," particularly insofar as it addressed the concept of "reasonable progress." Part III: Proposed Rule 62-303.700, Florida Administrative Code As noted above, proposed Rule 62-303.700, Florida Administrative Code, describes the first two phases of the "basin management cycle" and the TMDL-related events that will occur during these phases. It reads as follows: Listing Cycle The Department shall, to the extent practical, develop basin-specific verified lists of impaired waters as part of its watershed management approach, which rotates through the State's surface water basins on a five year cycle. At the end of the first phase of the cycle, which is designed to develop a preliminary assessment of the basin, the Department shall update the planning list for the basin and shall include the planning list in the status report for the basin, which will be noticed to interested parties in the basin. If the specific pollutant causing the impairment in a particular water segment is not known at the time the planning list is prepared, the list shall provide the basis for including the water segment on the planning list. In these cases, the pollutant and concentration causing the impairment shall be identified before the water segment is included on the verified list to be adopted by Secretarial Order. During the second phase of the cycle, which is designed to collect additional data on waters in the basin, interested parties shall be provided the opportunity to work with the Department to collect additional water quality data. Alternatively, interested parties may develop proposed water pollution control mechanisms that may affect the final verified list adopted by the Secretary at the end of the second phase. To ensure that data or information will be considered in the preliminary basin assessment, it must be submitted to the Department or entered into STORET or, if applicable, the DoH database no later than September 30 during the year of the assessment. Within a year of the effective date of this rule, the Department shall also prepare a planning list for the entire state. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The preference expressed in proposed Rule 62-300.700, Florida Administrative Code, for verified lists to be developed on a "basin-specific" basis "as part of the Department's watershed management approach" is consistent with the directive in the first sentence of Subsection (3)(a) of Section 403.067, Florida Statutes, that the Department conduct its TMDL assessment for the “basin in which the water body . . . is located.” Proposed Rule 62-300.700, Florida Administrative Code, carries out the mandate in the second sentence of Subsection (3)(a) of Section 403.067, Florida Statutes, that, in conducting its TMDL assessment, the Department "coordinate" with "interested parties." Furthermore, the proposed rule makes clear that parties outside the Department will have the opportunity "work with the Department to collect additional water quality data" needed to meet data sufficiency requirements. Identifying the "pollutant and concentration causing the impairment" before including a water on the "verified list," as proposed Rule 62-303.700, Florida Administrative Code, requires be done, is something the Department will need to do to comply with the directive contained in the third sentence of Subsection (4) of Section 403.067, Florida Statutes. Part III: Proposed Rule 62-303.710, Florida Administrative Code Proposed Rule 62-303.710, Florida Administrative Code, addresses the "[f]ormat of [v]erified [l]ist and [v]erified [l]ist [a]pproval." It reads as follows: The Department shall follow the methodology established in this chapter to develop basin-specific verified lists of impaired water segments. The verified list shall specify the pollutant or pollutants causing the impairment and the concentration of the pollutant(s) causing the impairment. If the water segment is listed based on water quality criteria exceedances, then the verified list shall provide the applicable criteria. However, if the listing is based on narrative or biological criteria, or impairment of other designated uses, and the water quality criteria are met, the list shall specify the concentration of the pollutant relative to the water quality criteria and explain why the numerical criterion is not adequate. For waters with exceedances of the dissolved oxygen criteria, the Department shall identify the pollutants causing or contributing to the exceedances and list both the pollutant and dissolved oxygen on the verified list. For waters impaired by nutrients, the Department shall identify whether nitrogen or phosphorus, or both, are the limiting nutrients, and specify the limiting nutrient(s) in the verified list. The verified list shall also include the priority and the schedule for TMDL development established for the water segment, as required by federal regulations. The verified list shall also note any waters that are being removed from the current planning list and any previous verified list for the basin. The verified basin-specific 303(d) list shall be approved by order of the Secretary. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The second and fourth sentences of Subsection (1) of proposed Rule 62-303.710, Florida Administrative Code, track the requirements of the third sentence of Subsection (4) and the first and second sentences of Subsection (3)(c), respectively, of Section 403.067, Florida Statutes. Furthermore, as a practical matter, a TMDL cannot be developed if the culprit pollutant is not able to be identified. Subsection (2) of proposed Rule 62-303.710, Florida Administrative Code, was included in the proposed rule because, in most instances, the Department does not consider dissolved oxygen to be a pollutant. The pollutants most frequently associated with exceedances of the dissolved oxygen criteria are nutrients (nitrogen and/or phosphorous). It is essential to identify the "limiting nutrient," as Subsection (3) of proposed Rule 62-303.710, Florida Administrative Code, requires the Department to do, inasmuch as the "limiting nutrient" is the particular pollutant for which a TMDL will be developed. Part IV: Overview Part IV of proposed Rule Chapter 62-303, Florida Administrative Code, is entitled, "Miscellaneous Provisions." It includes two proposed rules, proposed Rule 62-303.720, Florida Administrative Code, and proposed Rule 62-303.810, Florida Administrative Code. Part IV: Proposed Rule 62-303.720, Florida Administrative Code Proposed Rule 62-303.720, Florida Administrative Code, describes how waters may be removed from the "planning list" and the "verified list." The proposed rule, which is entitled, "Delisting Procedures," cites Sections 403.061 and 403.067, Florida Statutes, as its "[s]pecific [a]uthority" and Sections 403.062 and 403.067, Florida Statutes, as the "[l]aw [i]mplemented" by the proposed rule. Subsection (1) of proposed Rule 62-303.720, Florida Administrative Code, addresses the removal of waters from the "planning list." It reads as follows: Waters on planning lists developed under this Chapter that are verified to not be impaired during development of the verified list shall be removed from the State's planning list. Once a water segment is verified to not be impaired pursuant to Part III of this chapter, the data used to place the water on the planning list shall not be the sole basis for listing that water segment on future planning lists. The "removal" provisions of Subsection (1) of proposed Rule 62-303.720, Florida Administrative Code, will apply to all waters on the planning list "that are verified to not be impaired during development of the verified list," including those waters that had been placed on the "planning list" pursuant to Subsection (2) of proposed Rule 62-303.300, Florida Administrative Code, by virtue of their having been on the state's 1998 303(d) list. Waters removed from the "planning list" pursuant to Subsection (1) of proposed Rule 62-303.720, Florida Administrative Code, will be eligible to reappear on "future planning lists," but not based exclusively on "the data used to [initially] place the water on the planning list." Additional data will be needed. Subsections (2) and (3) of proposed Rule 62-303.720, Florida Administrative Code, address the removal of waters from the "verified list." They read as follows: Water segments shall be removed from the State's verified list only after completion of a TMDL for all pollutants causing impairment of the segment or upon demonstration that the water meets the water quality standard that was previously established as not being met. For waters listed due to failure to meet aquatic life use support based on water quality criteria exceedances or due to threats to human health based on exceedances of single sample water quality criteria, the water shall be delisted when: the number of exceedances of an applicable water quality criterion due to pollutant discharges is less than or equal to the number listed in Table 3 for the given sample size, with a minimum sample size of 30. This table provides the number of exceedances that indicate a maximum of a 10% exceedance frequency with a minimum of a 90% confidence level using a binomial distribution, or following implementation of pollution control activities that are expected to be sufficient to result in attainment of applicable water quality standards, evaluation of new data indicates the water no longer meets the criteria for listing established in section 62-303.420, or following demonstration that the water was inappropriately listed due to flaws in the original analysis, evaluation of available data indicates the water does not meet the criteria for listing established in section 62-303.420. New data evaluated under rule 62- 303.720(2)(a)1. must meet the following requirements: they must include samples collected during similar conditions (same seasons and general flow conditions) that the data previously used to determine impairment were collected with no more than 50% of the samples collected in any one quarter, the sample size must be a minimum of 30 samples, and the data must meet the requirements of paragraphs 62-303.320(4), (6) and (7). For waters listed due to failure to meet aquatic life use support based on biology data, the water shall be delisted when the segment passes two independent follow-up bioassessments and there have been no failed bioassessments for at least one year. The follow-up tests must meet the following requirements: For streams, the new data may be two BioRecons or any combination of BioRecons and SCIs. The bioassessments must be conducted during similar conditions (same seasons and general flow conditions) under which the previous bioassessments used to determine impairment were collected. The data must meet the requirements of Section 62-303.330(1) and (2), F.A.C. For waters listed due to failure to meet aquatic life use support based on toxicity data, the water shall be delisted when the segment passes two independent follow-up toxicity tests and there have been no failed toxicity tests for at least one year. The follow-up tests must meet the following requirements: The tests must be conducted using the same test protocols and during similar conditions (same seasons and general flow conditions) under which the previous test used to determine impairment were collected. The data must meet the requirements of rules 62-303.340(1), and the time requirements of rules 62-303.340(2) or (3). For waters listed due to fish consumption advisories, the water shall be delisted following the lifting of the advisory or when data complying with rule 62-303.470(1)(a) and (b) demonstrate that the continuation of the advisory is no longer appropriate. For waters listed due to changes in shellfish bed management classification, the water shall be delisted upon reclassification of the shellfish harvesting area to its original or higher harvesting classification. Reclassification of a water from prohibited to unclassified does not constitute a higher classification. For waters listed due to bathing area closure or advisory data, the water shall be delisted if the bathing area does not meet the listing thresholds in rule 62-303.360(1) for five consecutive years. For waters listed based on impacts to potable water supplies, the water shall be delisted when applicable water quality criteria are met as defined in rule 62- 303.380(1)(a) and when the causes resulting in higher treatment costs have been ameliorated. For waters listed based on exceedance of a human health-based annual average criterion, the water shall be delisted when the annual average concentration is less than the criterion for three consecutive years. For waters listed based on nutrient impairment, the water shall be delisted if it does not meet the listing thresholds in rule 62-303.450 for three consecutive years. For any listed water, the water shall be delisted if following a change in approved analytical procedures, criteria, or water quality standards, evaluation of available data indicates the water no longer meets the applicable criteria for listing. Table 2: Delisting Maximum number of measured exceedances allowable to DELIST with at least 90% confidence that the actual exceedance rate is less than or equal to ten percent. Sample Sizes From To Maximum # of exceedances allowable for delisting 30 37 0 38 51 1 52 64 2 65 77 3 78 90 4 91 103 5 104 115 6 116 127 7 128 139 8 140 151 9 152 163 10 164 174 11 175 186 12 187 198 13 199 209 14 210 221 15 222 232 16 233 244 17 245 255 18 256 266 19 267 278 20 279 289 21 290 300 22 301 311 23 312 323 24 324 334 25 335 345 26 346 356 27 357 367 28 368 378 29 379 389 30 390 401 31 402 412 32 413 423 33 424 434 34 435 445 35 446 456 36 457 467 37 468 478 38 479 489 39 490 500 40 Any delisting of waters from the verified list shall be approved by order of the Secretary at such time as the requirements of this section are met. Subsection (2)(a)1. of proposed rule 62-303.720, Florida Administrative Code, establishes a statistical methodology appropriate for "delisting" waters that have been listed as impaired based upon {e]xceedances of [a]quatic [l]ife- [b]ased [w]ater [q]uality [c]riteria." This "delisting" methodology" is the "equivalent" (as that term is used in Subsection (5) of Section 403.067, Florida Statutes) of the statistical methodology that will be used, pursuant to proposed Rule 62-303.420, Florida Administrative Code, to verify impairment based upon such exceedances. Both methodologies are based on the binomial model and use an "exceedance frequency" threshold of ten percent with a minimum confidence level of 90 percent. A greater minimum sample size is required under Subsection (2)(a)1. of proposed Rule 62-303.720, Florida Administrative Code, because the Department will need, thereunder, "to have at least 90 percent confidence that the actual exceedance rate is less than ten percent" "as opposed to greater than ten percent, which is a bigger range." The "calculations [reflected in the table, Table 3, which is a part of Subsection (2)(a)1. of proposed Rule 62- 303.720, Florida Administrative Code] are correct." There is nothing unreasonable about the "delisting" criteria set forth in Subsections (2)(c) and (2)(j) of proposed Rule 62-303.720, Florida Administrative Code. Subsection (2)(c) of proposed Rule 62-303.720, Florida Administrative Code, reasonably requires the Department, where waters have been "listed due to failure to meet aquatic life use support based on toxicity data" (in the form of two failed toxicity tests conducted "two weeks apart over a twelve month period"), to "delist" these waters if the Department has more recent "equivalent [toxicity] data" (in the form of two passed "follow-up toxicity tests," with no failed tests for at least twelve months) showing that the waters are not toxic. Subsection (2)(j) of proposed Rule 62-303.720, Florida Administrative Code, reasonably requires the Department to "delist" a water "following a change in approved analytical procedures" only where the change calls into question the validity and accuracy of the data that was relied upon to make the original listing determination and there is other data demonstrating that the water meets water quality standards. Code Part IV: Proposed Rule 62-303.810, Florida Administrative Proposed Rule 62-303.810, Florida Administrative Code, is entitled, "Impairment of Interstate and Tribal Waters." It reads as follows: The Department shall work with Alabama, Georgia, and federally recognized Indian Tribes in Florida to share information about their assessment methodology and share water quality data for waters that form state boundaries or flow into Florida. In cases where assessments are different for the same water body, the Department shall, to the extent practical, work with the appropriate state, Indian Tribe and EPA to determine why the assessments were different. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New
The Issue The issue in this case is whether the St. Johns River Water Management District (District) should issue a consumptive use permit (CUP) in response to Application Number 99052 filed by the City of Titusville and, if so, what CUP terms are appropriate.
Findings Of Fact Area II and III Wellfields On February 10, 1998, the District issued CUP 10647 to the City of Titusville, authorizing the withdrawal of an annual average of 6.5 mgd from the City's Area II and Area III Wellfields, 5.4 from Area II and 1.1 from Area III. These wellfields are owned and operated by the City and are located within its municipal boundaries. They produce water from the SAS. The Area II Wellfield is located near I-95 in the northeastern portion of the City and consists of shallow wells primarily constructed between 1955 and 2002. It consists of 53 production wells, of which 31 are considered to be of primary use. The City replaced 16 Area II production wells in 1995 and 4 production wells in 2000 and is currently considering the replacement of 4 additional wells. The Area III Wellfield is located in the south-central portion of the City’s service area. It consists of 35 production wells, of which 18 are considered to be of primary use. Petitioners contend that both the "safe yield" (the quantity of water the City can withdraw without degrading the water resource) and the "reliable yield" (the quantity of water the City can dependably withdraw) of the Area II and III Wellfields are the permitted limits of 5.4 and 1.1 mgd, respectively. The City and the District contend that saline intrusion into the SAS has reduced the safe and reliable yields to significantly less than the permitted amounts at this time. Historically, the Area II Wellfield was the most productive wellfield. Prior to 1988, the City relied entirely on the Area II Wellfield and pumped almost 5 mgd from it at times. Since then, several Area II wells have shown signs of water quality degradation that has resulted in a reduction in pumping to better stabilize water quality levels. For the past five years, the City has only pumped approximately 3 mgd on an annual average basis from the Area II Wellfield. Chloride concentrations exceeding 250 mg/l have been recorded in 16 Area II production wells. Chloride concentrations exceeding 250 mg/l have been recorded in 22 Area III production wells. About 10 wells in the Area II and III Wellfields have been abandoned because of water quality degradation. At the Area II Wellfields there are 10 wells whose use is impaired because of water quality issues. At the Area III Wellfields there are 15 wells whose use is impaired because of water quality issues. Area III has had serious chloride problems, with concentrations at or near 200 mg/l for much of the mid-90's. In the Area III Wellfield, the Anastasia wells have the best water quality. However, these wells have also seen increasing concentrations of chlorides, with one well over 200 mg/l. According to information introduced into evidence by the City, it appears that Area III began to have chloride problems primarily due to over-pumping.5 The City pumped far in excess of permit limits from Area III during the early 1990's, including almost twice the permit limit in 1990 and 1.5 times the limit in 1991. While chlorides were between 77 and 92 mg/l in 1990-92, they began to rise in 1993 and were between 192 and 202 mg/l for the rest of the decade. Area III production declined in 1997 to approximately 0.66 mgd and declined further to a low of approximately 0.5 mgd in 1999. In 2000, chlorides fell to approximately 138 mg/l and then rose to approximately 150 mg/l in 2002-04, while production gradually rose to close to the permit limit in 2002 and 2003, before dipping to 0.75 mgd in 2004. In 2005, production was back up to 1 mgd, and chlorides were approximately 87 mg/l. During the five years from 2001 through 2005, the City has pumped an annual average rate of approximately 1 mgd from Area III. In contrast, Area II has not been over-pumped during the same time period. Area II production generally declined from a high of 4.146 mgd in 1992 to a low of 2.525 mgd in 2000, except for an increase of approximately 0.25 mgd between 1997 and 1998. During this time, chlorides generally declined from a high of 124 mg/l in 1993 to approximately 68 mg/l in 2000, with the exception of a rise to approximately 111 mg/l in 1999. Area II production then generally increased through 2003 to approximately 3.000 mgd, where it remained in 2004 before declining to approximately 2.770 mgd in 2005. Area II chlorides were approximately 113 mg/l in 2001, 109 in 2002, 86 in 2003, 76 in 2004, and 83 in 2005. During the five years from 2001 through 2005, the City has pumped only an annual average rate of 2.86 mgd. In 1995, the City entered into a contract with the City of Cocoa requiring the City to pay for at least 1 mgd each year, whether the City actually takes the water or not (the "take-or-pay" clause). Using the Cocoa water allowed the City to reduce production from Area III without a corresponding increase in production from Area II. Water conservation measures implemented since 1998, including conservation rates, have since reduced per capita water use. In 2002, the contractual take-or-pay requirement was reduced to 0.5 mgd. After 2002, purchases of Cocoa water have amounted to 0.576, 0.712, and 0.372 mgd on an annual average basis. As a result, since at least 1990 Area II has not been required to produce at its permitted limit. It is not clear exactly what the City believes to be safe and reliable yields at this time from Areas II and III. In its PRO, the City took the position that the total reliable yield is 3.5 to 4 mgd, of which 2.25 to 2.5 mgd is attributable to the Area II Wellfield and 0.75 mgd is attributable to the Area III Wellfield. However, its consultant, Mr. Patrick Barnes, testified that the City's current reliable yields are 3 mgd from Area II and 1 or 1.1 mgd from Area III. He testified that the safe yield from Area II would be approximately 3.5 mgd. The District has not formulated an opinion as to the exact of amount of water that can be produced from the Area II and III Wellfields on a sustainable basis. However, the District believes that recent production levels, which have resulted in a stabilization of chloride concentrations, may be the most production that can be sustained from these facilities without adverse water resource impacts. That would mean approximately 4.5 mgd on an annual average basis from Areas II and III combined. It might be possible for the City to expand the reliable yield of the Area II Wellfield by constructing additional wells or through some other measures. But Brevard County’s North Brevard Wellfield, located immediately north of the City’s Area II Wellfield, utilizes the same SAS used by the Area II Wellfield, and Brevard County recently received an increased permitted allocation from the District for this facility. This would limit the City’s ability to expand the current production of water from the Area II Wellfield. Other limitations on expansion of production from Areas II and III include: the relatively high risk of contamination of the SAS from pollution sources such as underground petroleum storage tanks; the limited space available in an increasingly urbanized area for the construction of new wells; the chronic bio-fouling and encrustation of wells due to the high iron content of the SAS; and the low specific capacity of each production well. For these reasons, it is not clear at this point in time whether it is possible to sustain more water production from Areas II and III than the City has pumped in recent years. B. Area IV Application and TSR On March 6, 2001, the City of Titusville submitted its application to modify CUP 10647. Included in this application was a proposal to add a new Area IV Wellfield in northwest Brevard County to pump up to 2.75 mgd from the UFAS. The District issued a series of seven Requests for Additional Information in between April 5, 2001, and March 23, 2004. On December 15, 2004, the District issued its initial TSR for the CUP modification application. That TSR proposed to authorize the use of 2.75 mgd from the UFAS and 0.18 mgd of groundwater from the SAS from the proposed Area IV Wellfield and 3.3 mgd of groundwater from the SAS from the existing Area II and Area III Wellfields to serve a projected population of 56,565 in 2008. There was no request to extend or renew the permit, which expires February 10, 2008. Miami Corporation filed a petition challenging this TSR. On May 13, 2005, the City submitted a revised application for a separate Individual CUP for the Area IV Wellfield, rather than modifying its existing CUP 10647 to include the new wellfield, with a permit expiration of December 31, 2010. On May 25, 2005, the staff issued a revised TSR. That TSR proposed a new permit to authorize up to 2.75 mgd of groundwater from the UFAS and 0.178 mgd of groundwater from the SAS from the proposed Area IV Wellfield to serve a projected population of 59,660 in 2010. The revised TSR noted that the proposed permit expiration date for the Area II and Area III Wellfields would remain February 10, 2008. Vergie Clark filed a petition challenging the revised TSR, as did Miami Corporation. After various notices on the TSR and the revised TSR to interested persons in Brevard County, in August 2005 the District issued additional notice to interested persons in Orange, Seminole and Volusia Counties. As a result, all required public notices have been issued. On March 14, 2006, the City again revised its application, and on May 1, 2006, the District issued its second revised, and final, TSR--which is the TSR now at issue. The TSR at issue recommended that a CUP be issued to Titusville for 2.75 mgd of groundwater from the UFAS and .18 mgd of groundwater from the SAS for wetland hydration and aquifer recharge from the Area IV Wellfield on an annual average basis to serve a projected population of 63,036 in 2010. This TSR provided that the proposed permit would expire December 31, 2010. TSR at Issue Water Use Allocation The CUP recommended by the TSR would only grant the City a water allocation from the Area IV Wellfield for 2009 and 2010. The recommended CUP would allow the City to withdraw water from the Area IV Wellfield at an annual average rate of 2.75 mgd during those years for public supply. (Other Condition 4) The CUP recommended by the TSR would limit the City’s potable water allocation from the Area IV Wellfield to a maximum rate of 3.85 mgd during the four consecutive months of the dry season, which can occur during any time of the year. If 3.85 mgd is withdrawn during this four-month period, the withdrawal rate for the remaining 8 months cannot exceed 2.21 mgd. (Other Condition 8) The CUP recommended by the TSR would limit the City’s potable water allocation from the Area IV Wellfield to a maximum rate of 4.41 mgd during any single month. (Other Condition 7) The CUP recommended by the TSR would limit the City’s potable water allocation from the Area IV Wellfield to a maximum rate of 6.5 mgd during any single day during a severe drought, when the existing sources (meaning Areas II and III) cannot be used without inducing water quality degradation or exceeding permitted quantities. (Other Condition 9) The CUP recommended by the TSR would allow the City to withdraw water from the SAS extraction wells at an annual average rate of up to 0.178 mgd in 2009 and 2010 for wetland hydration and surficial aquifer recharge. (Other Condition 6) The CUP recommended by the TSR would limit the withdrawal of water from the Area II, III and IV Wellfields to a combined annual average rate of 5.79 mgd in 2009 and a combined annual average rate of 6.01 mgd in 2010. The CUP recommended by the TSR would limit the withdrawal of water from the Area II, III and IV Wellfields to a combined maximum daily rate of 8.88 mgd in 2009 and 9.0 mgd in 2010. (Other Conditions 5, 9) The CUP recommended by the TSR would reduce Titusville's combined annual average and maximum daily allocations from the Area II, III and IV Wellfields in 2009 and 2010 by an amount equivalent to the quantity of water purchased from the City of Cocoa during each year. (Other Conditions 5, 9) Other Condition 10 in the recommended by the TSR notifies the City that nonuse of the water supply allocated by the CUP for two years or more is grounds for revocation by the District's Governing Board, permanently and in whole, unless the City can prove that its nonuse was due to extreme hardship caused by factors beyond the City's control. Permit Duration The CUP recommended by the TSR would not allow the City to withdraw water from the Area IV Wellfield earlier than January 1, 2009; as indicated, it would expire on December 31, 2010. (Other Conditions 2, 4). Saline Water Intrusion The CUP recommended by the TSR contains a permit condition requiring the City to implement the proposed saline water monitoring plan by sampling and analyzing Saline Water Monitor Wells SWMW 1-6 and UFAS production wells 401, 403, 405, 407, 409, 411, 413 and 415 quarterly for water levels, chloride and total dissolved solids. (Other Condition 11) The CUP recommended by the TSR contains a permit condition authorizing the District to modify the allocation granted to the City in whole or in part or to otherwise curtail or abate the impact in the event of saline water intrusion. (Other Condition 14) The CUP recommended by the TSR contains a permit condition requiring the City to cease withdrawal from any UFAS production well, if any quarterly water sample from that well shows a chloride concentration exceeding 250 mg/l. That same condition would limit the operation of any UFAS production well with a quarterly sample exceeding 250 mg/l to six hours per day with a minimum 24 hours recovery between pumping cycles if subsequent samples contain chloride concentrations between 200 mg/l and 249 mg/l. (Other Condition 25) Environmental Impacts and Avoidance and Minimization The CUP recommended by the TSR contains a permit condition requiring the City to implement the proposed environmental monitoring plan for hydrologic and photo- monitoring at 16 wetland sites within one year of permit issuance and to establish a baseline prior to the initiation of groundwater withdrawals. That same condition requires the City to collect water level data at each wetland site either on a daily or weekly basis and report to the District every six months in District-approved, computer-accessible format. (Other Condition 12) The CUP recommended by the TSR contains a permit condition authorizing the District to revoke the permit in whole or in part or to curtail or abate impacts should unanticipated adverse impacts occur to wetlands, lakes and spring flow. (Other Condition 23) The CUP recommended by the TSR contains a permit condition authorizing the District to require the City to implement the proposed avoidance and minimization plan should unanticipated impacts occur to Wetland A4-2 (a shallow marsh near the middle of the wellfield) within 90 days of notice by the District. That same permit condition authorizes the District to require the City to submit a wetland rehydration plan for any other adversely affected wetland within 30 days of notice by the District and to implement the plan without 90 days of approval by the District. The District would require the City to implement avoidance measures before the wetlands are actually allowed to suffer adverse impacts. (Other Condition 24) Impacts to Other Existing Legal Users of Water The CUP recommended by the TSR contains a permit condition authorizing the District to require mitigation of any unanticipated interference to existing legal users of water due to withdrawals from the Area IV Wellfield. Mitigation may include installation of a new pump or motor, installation of additional drop pipe, new electrical wiring, connection with an existing water supply system, or other appropriate measures. (Other Condition 15) Water Conservation Measures and Reuse The City is implementing extensive water conservation measures. The City’s water conservation plan includes public education measures (e.g., televised public service announcements, helping to create water conservation videos and distributing them to the public, commissioning an award winning native plant mural, providing exhibits and speakers for public events), toilet and showerhead retrofits, and a water conservation based rate structure. A water conservation rate structure provides the potable water customer with an economic incentive to use less water. The most common conservation rate structure is a tiered-rate whereby the cost per gallon of water increases as the customer uses more water. While the District reviews the rate structure to evaluate whether it will achieve conservation, it does not mandate the cost per gallon of water. An audit of the City’s potable water distribution system was conducted and recent water use records were evaluated to determine if all necessary water conservation measures were in place. The audit indicated that the potable water system has small unaccounted-for water losses, approximately 6.5 percent, and relatively low residential per capita water use. The City has implemented a water conservation plan that implements rule requirements; as a result, the City has provided reasonable assurance that it is implementing all available water conservation measures that are economically, environmentally, or technologically feasible. The City cannot use reclaimed water to meet its potable water demands associated with direct human consumption and food preparation. However, reclaimed water can be used to replace that part of the City’s allocation that is associated with irrigation-type uses. The City has operated a reclaimed water reuse system since 1996. It is projected that 67 percent of the available wastewater flows will be utilized by 2010 for irrigation, with the remainder going to a wetland system during wet weather periods when irrigation demands are low. The City is using reclaimed water to the extent it is economically, environmentally and technologically feasible. In the case of public supply, the District looks to the amount of water requested for each person in a projected population in determining whether the water will be used efficiently. The metric that the District normally considers when conducting this part of the evaluation is the per capita usage. Population Projections and Per Capita Water Use As indicated, the proposed CUP would expire on December 31, 2010. Although the City and District would anticipate an application for renewal to be filed, demand for water projected beyond December 31, 2010, is not relevant to the need for the proposed CUP. In the case of public supply, projected demand for water usually is calculated by multiplying the projected population times per capita water use. Gross per capita (“GPC”) use in gallons per day (gpd) is the type of metric normally used to project demand for public supply of water. It is based on residential use and all other water uses supplied by the utility, including commercial, industrial, hotel/motel, and other type uses. That includes supply necessary to meet peak demands and emergencies. DEP requires that every public water supply system have an adequate water supply to meet peak demands for fire protection and health and safety reasons. If peak demands are not met, a major fire or other similar catastrophe could depressurize a public water system and possibly cause water quality problems. Projections of need for water in the future must take into account peak demands and emergency needs. Water used for those purposes is included in the historical average daily flows (ADF) from which historical GPC is derived. Unless there is good information to the contrary, in projecting GPC one assumes that those uses will increase roughly in proportion to the residential use. City's Projection Contending that the University of Florida Bureau of Economic and Business Research (BEBR) does not estimate or project population for municipalities, and that BEBR projections are based on historical trends that would under-project population in the City, the City used a different source and method to project population in the City's water service area on December 31, 2010. For its method, the City had Courtney Harris, its Planning Director, project the number of dwelling units that would be developed and occupied in 2011, calculating the additional people associated with each unit (based on the 2000 Census, which identified 2.32 as the average number of persons per dwelling unit in the City), and adding the resulting number to the City’s existing service area population as of 2005. The City's method yielded various results depending on when proposed developments in the City were reviewed. Ultimately, the City projected a population of 60,990 at the end of 2010. The City's method depends on the ability of its Planning Director to accurately predict the timing of new residential construction and sales, which is not easy to do (as indicated by the different results obtained by the City over time), since there are many factors affecting residential development and the real estate market. The ultimate predictions of the City's Planning Director assume that residential development will continue at an extraordinarily high pace although there already was evidence of downturn. The City's method also assumed that all new units will be sold (which, again, is contingent on market conditions) and fully occupied (although a 90 percent occupancy rate would be a more realistic.) The method also does not account for decreases in population in a number of areas in the Titusville service area (while overall population increased, mostly as a result of growth that has been occurring in a single census tract.) The City's witnesses then calculated a per capita water use rate by averaging the actual rates for the 11 years from 1995 through 2005, which resulted in projected per capita water use rate of 100.35, and a projected demand of 6.12 mgd at the end of 2010. The justification for averaging over 11 years, instead of the last five years, was that the last five years have been unusually wet, which would depress demand to some extent. However, using 11 years also increased the average water use by taking into account the higher use rates common before conservations measures, including conservation rates, went into effect (in particular, 123.75 gpd for 1995, 122.36 gpd for 1996, and 109.94 gpd for 1998.) Since 1998, and implementation of the conservation rates and other measures, water use rates have been significantly lower. While the average over the last 11 years was 100.35 gpd, the average over the last five years (from 2001- 2005) was just 92.15 gpd. Averaged since 1998, the City's water use rate has been 93.34 gpd. While wetter-than-normal conditions would be expected to depress water use to some extent due primarily to decreased lawn irrigation, many of the City's water customers have private irrigation wells for this purpose. Besides, Mr. Peterson, the City's Water Resources Manager, testified that not many of the City's water customers use potable water for lawn irrigation due to the new conservation rates. Petitioners' Projection Miami Corporation's population expert, Dr. Stanley Smith, is the Director of BEBR. Dr. Smith projected the population for the City's service area by first developing an estimate of the population of the water service area in 1990 and 2000 using block and block group data, and then using those estimates to create estimates from 2001-2005. Dr. Smith then projected population in the City's water service area using a methodology similar to what BEBR uses for county projections. Dr. Smith's methodology used three extrapolation techniques. He did not use a fourth technique, often used at BEBR, called shift-share, because he believed that, given Titusville's pattern of growth, using shift-share might produce projections that were too low. In developing his final projections, Dr. Smith also excluded the data from 1990 to 2000 because growth during that period was so slow that he felt that its inclusion might result in projections that were too low. Dr. Smith's approach varied slightly from the typical BEBR methodology in order to account for the fact that the City's growth has been faster since 2000. Dr. Smith applied an adjustment factor based on an assumption also used by the City's expert that 97.3 percent of the projected population within the City's water service area in 2010 would be served by the City. Using his method, Dr. Smith projected the population of the Titusville water service area to be 53,209 on December 31, 2010. Based on recent population estimates, Dr. Smith believes that, if anything, his projections are too high. It was Dr. Smith's opinion from the data that the annual increases for Titusville and the Titusville water service area peaked in 2003 and that they had been declining since that time. That was especially true of 2006, when the increase was the smallest that it had been for many years. Petitioners' expert, Mr. Drake, calculated a per capita water use rate by averaging the actual rates for the most recent five years (2002-2006), which resulted in a per capita water use rate of 89.08 gpd, and a projected demand of 4.74 mgd at the end of 2010. He also calculated a per capita water use rate for 2006, which came to 88.65 gpd, which would give a slightly lower projected demand of 4.72 mgd. Ultimate Finding of Projected Water Demand Based on all the evidence, it is found that Dr. Smith's projection of the population that will use City water on December 31, 2010, is more reasonable than the City's projections. The City and District contend that, regardless of the calculated per capita water use rate, it is appropriate to base the City's allocation on a rate of 100.35 gpd because 90 to 100 gpd is very conservative per capita water use rate for a public water supply utility. However, the allocation should be based on the best estimate of actual demand, not a general rate commonly assumed for water utilities, even if conservative. The City and District also contend that it is appropriate to base the City's allocation on a higher use rate because the climatic conditions experienced in the City over what they considered to be the most recent five years (2001- 2005) have been average-to-wet. More rainfall generally means less water use, and vice-versa, but the greater weight of the evidence proved that the City's demand for water has not varied much due to climatic conditions in recent years (after implementation of conservation measures, including conservation rates.) (City Exhibit 19, which purported to demonstrate the contrary, was proven to be inaccurate in that it showed significantly more water use during certain drier years than actually occurred.) However, in 2000--which was after the implementation of conservation rates and also the City's driest year on record (in approximately 75 years)--the water use rate was approximately 97.5 gallons per person per day. An average of the last eight years (1999-2006), which would include all years clearly responsive to the conservation rates as well as the driest year on record, would result in a per capita water use rate of approximately 92.8 gpd, and a projected demand of approximately 4.94 mgd by December 31, 2010. The District argues in its PRO that, because a CUP water allocation is a legal maximum, it would be inappropriate to base the City's water allocation on demand during a wet or even an average year (which, it says, would set the permittee up to violate its permit requirements 50 percent of the time). If, instead, the City's water allocation were based on demand during 2000, the driest year on record, projected demand would be approximately 5.2 mgd on December 31, 2010. Those calculated water allocations--i.e., either the 4.94 mgd or the 5.2 mgd--would then be compared to the probable safe and reliable yield of 4.5 mgd from Areas II and III to determine the deficit on an annual average basis. Allowing a reasonable margin of error for the uncertainties of the predictions involved, a reasonable maximum annual average allocation for the proposed Area IV Wellfield would be 0.75 mgd. Mr. Jenkins suggested in rebuttal that, if the need for water is less than that set out in the proposed CUP in the TSR at issue, a CUP should nonetheless be issued but with lower water allocations. While the evidence supports a reduction of the annual average limit from 2.75 mgd to 0.75 mgd, there was insufficient evidence to show how the other water allocation limits in the proposed CUP should be changed. For the past 12 years, the City of Titusville has been able to purchase water under a contract with the City of Cocoa to meet all of its demands, including any peak or emergency water demands. Under the take-or-pay provision in the contract currently in effect, the City must pay for 0.5 mgd and presumably would take and use at least that amount so long as the contract remains in effect. This would reduce the City's projected water supply deficit through the end of 2010, and the City could rely on the Cocoa contract to cover any additional demand through the end of 2010 without Area IV. However, under the contract, the City can give notice on or before April 1 of the year in which it intends to terminate the contract effective October 1 of the same year. If a CUP for Area IV is issued, the City could terminate the current contract effective as early as October 1, 2008. It also is possible that the contract could be negotiated so that its termination would coincide with the time when the Area IV Wellfield becomes operational if not near October 1 of the year. As indicated, even if the contract remains in place, to the extent that the City receives water from the City of Cocoa for potable use during either 2009 or 2010, the allocations under the proposed TSR will be reduced an amount equivalent to the quantity provided to the City by Cocoa in that year. Finally, as indicated, the existing CUP for Areas II and III is set to expire in February 2008. Although it is anticipated that the City will apply to renew the existing CUP for Areas II and III, and that the District will approve a renewal at some level, it is not clear how much production will be approved for Areas II and III for the years 2009 and 2010. Meanwhile, the CUP proposed for Area IV provides that the combined annual groundwater withdrawals for public supply for the Areas II, III, and IV may not exceed 5.79 mgd for 2009 and 6.01 mgd in 2010. Based on the findings in this case, those figures should be reduced to no more than 5.2 mgd, and it must be anticipated that a similar condition would be placed on any renewal of the existing CUP for Areas II and III as well. Site Investigation At the time the City decided to apply for a CUP for Area IV, it was known that the UFAS in much of Brevard County was not suitable as a source of potable water supply, but there was believed to be a tongue of the UFAS in the northwest corner of the County and extending towards the southeast, and narrowing in that direction, that might be suitable for that purpose, particularly in the upper part of the aquifer. Because there was insufficient information to adequately evaluate the whether proposed Area IV, which was located along the Florida East Coast Railway (FEC) Right-of-Way (ROW), could be used for that purpose, the City’s consultant, Barnes, Ferland and Associates (BFA), designed a drilling and testing program to collect site-specific information in order to characterize the groundwater quality, identify the thickness of the freshwater zone in the UFAS, and determine hydraulic parameters for the groundwater system. In addition, DRMP conducted an environmental assessment of the Area IV Wellfield and surrounding property. The drilling and testing program designed by BFA for the Area IV Wellfield was similar to other hydrogeologic investigations conducted in the region with respect to wellfields operated by the City of Edgewater, the City of New Smyrna Beach, the City of Ormond Beach, the Orlando Utilities Commission and Orange County. The drilling and testing program for the Area IV Wellfield included Time-Domain Electromagnetic Mapping ("TDEM") performed by SDII Global, a consultant retained by the District. TDEM is not typically used for the hydrogeologic investigation of a new wellfield. The TDEM technique involves estimating the depth to the 250 mg/l and 5,000 mg/l chloride concentration in the groundwater system using electrical resistivity probes. The technique was applied at four locations along the FEC Right-of- Way. In addition to the TDEM study, BFA installed three test production wells along the FEC ROW, collected lithologic samples with depth, performed borehole aquifer performance and step drawdown tests at two test sites and recorded water quality with depth through grab and packer samples. The northernmost test production well was Test Site 1, which corresponds to Area IV production well 401. The middle test production well was Test Site 3, which corresponds to either Area IV Well 412 or Area IV Well 413. The southernmost test production well was Test Site 2, which is located approximately 1.5 miles south of the southernmost Area IV production well. Test Sites 1 and 2 were constructed first and Test Site 3 was drilled later because of unfavorable water quality conditions encountered at Test Site 2. Test Site 1 is located on the FEC ROW approximately 430 feet southeast of the Volusia-Brevard County line. At Test Site 1, BFA installed a test-production well (UF-1D), a UFAS monitor well (UF-1S), and a SAS monitor well (SA-1) in 2001. In 2005 BFA installed two additional SAS monitor wells (MW-1 and RW-1) near Test Site 1. The test production well was drilled to a depth of 500 feet below land surface and then back-plugged to a depth of 250 feet below land surface and cased to a depth of 105-110 feet below land surface. Test Site 2 is located on the FEC ROW approximately 2.8 miles southeast of the Volusia-Brevard County line. At Test Site 2, BFA installed a single UFAS Monitor Well (UF-2S). The monitor well was drilled to a total depth of 210-220 feet below land surface. Test Site 3 is located on the FEC ROW approximately 1.4 miles southeast of the Brevard-Volusia County line. At Test Site 3, BFA installed a test production well (UF-3D), a UFAS monitor well (UF-3S), and a SAS monitor well (SA-3). The test production well was drilled to a depth of 500 feet below land surface and then back-plugged to a depth of 210 below land surface.. Since Test Site 3 is either Area IV Well 412 or 413, and assuming production well 415 will be located 1,200 feet southeast of Test Site 3, this means that Test Site 2 is located at least one mile southeast of the southernmost Area IV production well. Test Sites 4 and 6 are located approximately three miles southeast of Brevard-Volusia County line. SAS test production wells were constructed at both sites to a total depth of about 20-30 feet below land surface. The site-specific hydrogeologic data collected by BFA as part of the drilling and testing program verified the groundwater basin and flow direction shown in Figure 15 of City Exhibit 523. DRMP’s environmental assessment of the Area IV Wellfield spanned the period from 2002 through 2006. In Spring 2002, DRMP evaluated areas within the predicted 0.2 foot drawdown contour by assessing wetland vegetation, photographing wetlands, noting wetland hydrologic conditions, investigating soil condition and wildlife utilization and evaluating surrounding land uses and natural communities. In Fall 2002, DRMP evaluated potential monitoring sites both on and off Miami Corporation's property by assessing wetland vegetation composition and hydrologic conditions, investigating soil conditions and wildlife utilization, evaluating surrounding land use and natural communities and locating suitable control sites. In Fall 2003, DRMP evaluated potential wetland monitoring sites near the southernmost Area IV production wells by assessing wetland vegetation composition and hydrologic conditions, investigating soil conditions and evaluating surrounding land uses and natural communities. In Spring 2005, DRMP assessed wetlands surrounding the Area IV Wellfield by evaluating wetland vegetation composition and hydrologic conditions, photographing wetlands, investigating soil conditions, evaluating surrounding land use and natural communities and collecting GPS points. In Fall 2005, DRMP investigated the Clark property by evaluating wetland vegetation and hydrologic conditions, photographing wetlands, investigating soil conditions and wildlife utilization and evaluating surrounding land uses and natural communities. In Spring 2006, DRMP developed a revised environmental monitoring plan and avoidance and minimization plan based on the new SDI MODFLOW Model by locating the final wetlands monitoring sites, developing the hydrologic and vegetative monitoring protocol, establishing the scope of the baseline study, reviewing the preliminary pipeline routing, construction and discharge inlet structures and preparing and submitting plan documents to the District. DRMP evaluated the occurrence of listed animal and plant species in the vicinity of the Area IV Wellfield as part of its environmental assessment. DRMP reviewed the Natural Areas Inventory for the Area IV Wellfield site, which identifies occurrences of listed species within a designated area. Additionally, DRMP made note of animal and plant species during the site visits in 2002, 2003, 2005, and 2006. DRMP evaluated the Farmton Mitigation Bank as part of its environmental assessment. DRMP reviewed the permit files for the Farmton Mitigation Banks, including the annual environmental monitoring reports prepared by Miami’s consultants. In 2005, DRMP conducted a field assessment of the Clark property including a thorough investigation of the fish pond, which Petitioners claim was adversely impacted during one or more of the APTs conducted by the City at the Area IV Wellfield. It was not necessary for the City’s environmental consultants to visit each and every wetland in the vicinity of the proposed Area IV Wellfield. Typically, only representative wetland sites are visited during the environmental assessment process. The scope of the City's hydrologic and environmental investigation of the Area IV Wellfield was adequate and consistent with industry standards and the District protocol for testing aquifers and characterizing aquifer performance and groundwater quality at the site. Nonetheless, Petitioners contend that there were serious deficiencies in the investigation's implementation and that additional investigation should have been performed. Hydrostratigraphy The SAS at the Area IV Wellfield is 40-to-50 feet deep and is composed primarily of unconsolidated sand, shell and silt. The intermediate confining unit (ICU) at the Area IV Wellfield consists of the Hawthorne Group and ranges in thickness from 40 to 60 feet. The top of the ICU is located 40- 50 feet below land surface and the bottom of the ICU is located 100 feet below land surface. This unit is composed of varying amounts of sand, shell, silt, indurated sandstone, clay, and some limestone. It tends to restrict the movement of water from the SAS to the UFAS. The UFAS at the Area IV Wellfield is a fairly homogenous limestone unit, which starts approximately 100 feet below land surface and extends to about 450 feet below land surface or 425 feet below mean sea level. It consists of the Ocala Group and grades into the upper portion of the Avon Park Formation. The middle confining unit (MCU) at the Area IV Wellfield starts at approximately 450 feet below land surface or 425 feet below mean sea level and ends approximately 1,000 feet below land surface. It comprises a denser, fine-grained dolomitic limestone within the Avon Park Formation. The MCU restricts the movement of water between the UFAS and LFAS. The location of the MCU at the Area IV Wellfield was determined by examining cuttings and video logs collected during drilling performed at Test Sites 1 and 3 and by measuring various properties of the aquifer with down-hole geophysical techniques. The MCU can be distinguished from the UFAS by the presence of both dolomite and limestone. The lithologic log for Test Site 1 indicates the presence of gray/tan limestone between 450 and 460 feet below land surface and light/gray limestone and dolomitic limestone between 460 and 470 feet below land surface. The lithologic log for Test Site 3 indicates the presence of tan dolomitic limestone between 450 and 460 feet below land surface and tan limestone and dolomitic limestone between 460 and 470 feet below land surface. After examining the video log for Test Site 1, Petitioners’ expert, Dr. Thomas Missimer, noted a “lithologic change” at 477 feet below land surface. Other characteristics of the MCU are a lower resistivity and a sharp decrease in flow. The data collected at Test Site 1 shows a reduction in resistivity at approximately 470 feet below land surface. The flow meter log for Test Site 1 exhibits a decrease in flow at approximately 450 feet below land surface. Petitioners’ experts, Thomas Missimer, Alge Merry, and Bruce Lafrenz contend that the top of the MCU at the Area IV Wellfield is located deeper than 450 feet below land surface or 425 feet below mean sea level. This contention is based on regional reports, the geophysical logs reported by BFA, and one of the packer tests conducted at the bottom of the test wells that showed a pumping rate of 85 gpm. The greater weight of evidence indicates the top of the MCU at the Area IV Wellfield starts at the elevation identified by BFA. The regional reports are not based on data collected from the immediate vicinity of the Area IV Wellfield. Additionally, the BFA's professional geologists who determined the top of the MCU included Joel Kimrey, who was the former head of the local USGS office, and had more experience with the hydrogeology of the MCU in Brevard and Volusia than any of the Petitioners’ geologic experts. Also, the BFA geologists had access to the drill cuttings, which were unavailable to the Petitioners’ experts when they made their determination. Finally, the pumping rate recorded during the packer test could be explained by an area of higher permeability within the MCU. More likely, the packer may have been partially open to the bottom of the UFAS. The Lower Floridan Aquifer System (LFAS) starts at about 1,000 feet below land surface and ends approximately 2,300 feet below land surface. Head Difference Data Head refers to the pressure within an aquifer. In an unconfined aquifer, it is the water table. In a confined or semi-confined aquifer, it is the level to which water would rise in a well penetrating into the aquifer. Head difference refers to the numerical difference between two water levels either in different aquifer at the same location or different locations in the same aquifer. In the context of the Area IV Wellfield, static head difference is the difference between the elevation of the water table in the SAS and the elevation of the potentiometric surface of the UFAS under non-pumping conditions at the same location. The static head difference reflects the degree of confinement in the ICU. If the static head difference between the SAS and UFAS is a large number, this indicates a high degree of confinement between the two systems. BFA took static head measurements at SAS and UFAS monitor wells located at Test Sites 1, 2 and 3 in January 2004, April 2004, and July 2006 and calculated the head difference based on those measurements. District expert, Richard Burklew, was present when the measurements were taken in April 2004 and July 2006 and verified the readings made by the City’s consultants. During all three sampling events a downward head gradient was noted at each site, which means the water table had a higher elevation than the potentiometric surface of the UFAS. In January 2004, the measured head difference at Test Sites 1, 2 and 3 were 6.2 feet, 5.5 feet and 5.9 feet, respectively. In April 2004, the measured head difference at Test Sites 1 and 3 were 8.1 feet and 8.1 feet, respectively. Finally, in July 2006, the measured head difference at Test Sites 1, 2 and 3 were 8.6 feet, 6.6 feet and 9.3 feet, respectively. The average of those observed head differences was 7.46 feet. At the time the head difference measurements were taken in July 2006, the region had experienced a rainfall deficit of 17 inches over the prior 12 months. Petitioners contend that the rainfall deficit may have skewed that head difference observation. However, according to the District’s expert, Richard Burklew, this would not necessarily have affected the head difference measurements because the hydrologic system would seek equilibrium, and the head difference would be the same. BFA collected static head difference measurements from Test Sites 1, 2 and 3 during both wet and dry seasons. The measurements do not show significant differences between seasons. Head difference data collected from hundreds of other Florida locations also do not show significant differences between seasons. This suggests that static head difference remains fairly constant at the Area IV Wellfield year round. Water level measurements taken by the City’s consultants from the wells on Clark’s property and reported in City Exhibit 52 do not determine static head difference between the SAS and UFAS because the exact construction of the wells was unknown, the completion depth of certain wells was unknown, the operational history of the wells was unknown, and the putative SAS well was located several hundred feet away from the UFAS well. For example, the depth of one of the wells is reported as 57 feet, which could easily be located in the ICU. If that is the case, then the head difference measured by comparing to the water level in this well would only be the head differential between the ICU and the UFAS. Finally, the Clark property is located in a more elevated region than Test Sites 1, 2, and 3, which means the water table will be lower and the head difference will be less than at the Area IV Wellfield. Water level measurements reported in the driller’s completion log for Wells 4175, 4176, 4177, and 5230 on Miami Corporation’s property do not determine static head difference between the SAS and UFAS because critical information concerning the construction of these wells is unknown. Additionally, the wells are much shallower than test production wells at Test Sites 1, 2 and 3. The water level measurements reported in the driller’s completion log for Wells 4175, 4176, 4177, and 5230 are not necessarily inconsistent with head difference measurements collected by BFA at Test Sites 1, 2 and 3. The head differences at these four well sites could be 6, 4, 7, and 6 feet, respectively, depending how the water measurements were made. Also, the measurements made by a driller could not be expected to be as accurate as measurements made by trained hydrologists. Further, if the soils in the vicinity of Well 4177 indicated a depth to water table of 5 feet below land surface, that would not necessarily be inconsistent with the head difference measurements collected by BFA at Test Sites 1, 2 and 3. Depth to Water Table The depth to water table is defined as the difference between the land surface elevation and the head value in the SAS. The water table in the Area IV Wellfield area is consistently close to land surface and often above land surface. The construction of numerous above-grade forest roads and roadside ditches on the property surrounding the Area IV Wellfield has had the effect of impounding surface water and raising the water table near land surface. The Area IV Wellfield and vicinity have a variety of soil types. The predominant wetland soil type is Samsula Muck, which is classified as a very poorly drained soil with a water table either at or above land surface. The predominant upland soil type is Myakka Fine Sand, which is characterized by a water table within a foot of land surface during four months of the year and within 40 inches of land surface during remainder of the year. The average depth to water table at the Area IV Wellfield is approximately 1 foot based on soil types. SAS levels at the three Farmton Mitigation Banks were measured at piezometers installed by Miami Corporation’s consultants from 2001 through 2005. This data confirms the water table at the Area IV Wellfield is consistently close to land surface and frequently above land surface. It indicates the depth to water table is typically less than 3 feet and in many cases within a foot or two. Also, it does not matter whether any of the piezometers were located near wetlands because they show seasonal variation in water levels, where the water table changes from slightly above land surface to below land surface over the course of a year. A water table depth of 6-14 feet below land surface is not realistic at the Area IV Wellfield based on soil conditions and vegetation communities. Such a depth to water would be indicative of a landscape composed primarily of xeric scrub communities with few, if any wetlands. These types of communities do not exist near the Area IV Wellfield. Aquifer Performance Tests The flow of water through an aquifer is determined by three primary hydraulic coefficients or parameters: transmissivity; storage; and leakance. An aquifer performance test (APT) is a pumping test where water is removed from the well at a set rate for a set period of time and drawdown is measured in the well and in neighboring monitor wells to calculate the hydraulic properties of the hydrologic formation. The main hydraulic properties determined through an APT are transmissivity, leakance, and storativity. These properties are used to characterize the water production capabilities of the hydrologic formations. These properties are also used in groundwater modeling to project impacts for longer periods of time and larger distances. Aquifer parameters can be determined from an aquifer performance test using analytical "curve-matching" techniques or a groundwater flow model such as MODFLOW. Curve-matching techniques involve the creation of a curve through measurement of drawdown and the matching of that curve to standard curves derived using analytical equations. Hydraulic conductivity or “K” is the term used to describe the ability of a hydrogeologic unit to conduct fluid flow. It is usually expressed in terms of horizontal hydraulic conductivity or “Kx” and “Ky” and vertical hydraulic conductivity or “Kz.” Transmissivity is the term used to describe the rate of movement of water for a given thickness of a hydrogeologic unit. It is the hydraulic conductivity of an aquifer times its thickness. Storativity is the term used to describe the amount of water that is released from any aquifer for a given unit change in head, or the compressability of the aquifer system. This value can normally be determined during a 4-5 day aquifer performance test. Specific yield is the term used to describe the long- term capacity of an aquifer to store water. This value cannot normally be determined during a 4-5 day aquifer performance test. Leakance is the term used to describe the vertical movement of water from above or below a given unit in response to changes in head or pumpage. APTs are standard practice for evaluating the suitability of a new area for development as a wellfield. Three APTs were conducted at Test Sites 1 and 3. No aquifer performance tests were conducted at Test Site 2. Petitioners question whether the APTs for the Area IV Wellfield were conducted by BFA in accordance with the applicable standard of care in the hydrogeologic profession. The District’s expert, Richard Burklew, believes the three APTs conducted at Test Sites 1 and 3 were adequate for purposes of determining appropriate aquifer parameters. Two APTs were conducted by BFA at Test Site 1. The first test was conducted on January 30-31, 2001, when Well UF-1D was pumped at about 700 gpm or approximately 1 mgd for 44-48 hours, and Wells UF-1S and SA-1 were used as monitor wells. The second test was conducted on April 8-12, 2003, when Well UF-1D was pumped at about 700 gpm or approximately 1 mgd for 96 hours, and Wells UF-1S and SA-1 were used as monitor wells. Using several analytical curve-matching techniques, BFA calculated a transmissivity of 7,300 ft2/day and a storativity of about 0.00036 on the basis of the 2001 APT at Test Site 1. They were unable to calculate a leakance value because the drawdown data did not reasonably fit the curve- matching techniques. For that reason, BFA performed another APT at Test Site 1 in 2003. Using several analytical curve-matching techniques, BFA calculated a transmissivity of 7,300 ft2/day, a storativity of 0.00045, and a leakance of 0.00029 day-1 on the basis of the 2003 APT at Test Site 1. One APT was conducted by BFA at Test Site 3 on April 10-13, 2001. Well UF-3D was pumped at about 700 gpm or approximately 1 mgd for 70 hours, and Wells UF-3S and SA-3 were used as monitor wells. Using several analytical curve-matching techniques, BFA calculated a transmissivity of 7,450 ft2/day, a storativity of 0.0002, and a leakance of 0.00026 on the basis of the 2001 APT at Test Site 3. However, because of problems with the test, leakance was not considered a good match for the analytical techniques. Leakance values determined by BFA from the APTs conducted at Test Sites 1 and 3 were based on the application of analytical curve-matching techniques. The leakance values determined through the conventional type curve-matching techniques employed by BFA are typically higher than the actual leakance values. They are also inherently limited because they assume the calculated leakance is due entirely to the ICU rather than a combination of the ICU and MCU as is the case at the Area IV Wellfield. The analytical techniques employed by BFA were unable to calculate separate leakance values for the ICU and the MCU. The best way to determine leakance values for each of these confining units was to use a MODFLOW model and observed head difference data. This was done by the City’s consultant, SDI, and is described in greater detail, infra. In January 2004, several APTs were conducted using two SAS wells referred to as Test Sites 4 and 6. These test sites are located more than 3 miles from the Clark property. Constant rate and variable rate APTs were conducted at both sites. During the constant rate tests, 230 gpm or about 0.33 mgd was pumped from the SAS well. Using several analytical curve-matching techniques, BFA calculated a transmissivity of 2,500 ft2/day for the surficial aquifer at those locations. Water Quality Data Consistent with the general understanding of the freshwater groundwater tongue extending from Volusia into Brevard County, the TDEM performed by SDII Global indicated that the depths to the 250 mg/l and 5,000 mg/l chloride concentrations decrease as one proceeds south along the FEC ROW. For example, the depths to the 250 mg/l and 5,000 mg/l chloride concentrations were 442 feet and 542 feet, respectively, at the northernmost test site, which is somewhat north of the City’s Test Site 1. The depth to the 250 mg/l and 5,000 mg/l chloride concentrations were 406 feet and 506 feet, respectively, at the southernmost test site, which is somewhat south of the City’s Test Site 2. Sixteen water quality grab samples were collected every 20-30 feet as the test production well at Test Site 1 was drilled, beginning at 120 feet below land surface and ending at 500 feet below land surface. This type of sampling is referred to as drill-stem testing. The chloride concentrations in the samples collected from 120 feet and 480 feet below land surface were 59 mg/l and 879 mg/l, respectively. The chloride concentrations in these samples did not exceed 250 mg/l until a depth of 460 feet below land surface was reached. Six water quality grab samples (drill-stem tests) were collected every 20-30 feet as the test production well at Test Site 2 was drilled, beginning 120 feet below land surface and ending 210 feet below land surface. The chloride concentrations in the samples collected from 120 feet and 210 feet below land surface were 124 mg/l and 845 mg/l, respectively. The chloride concentrations in these samples did not exceed 250 mg/l until a depth of 180 feet below land surface. Fourteen water quality grab samples (drill-stem tests), were collected every 20-30 feet as the test production well at Test Site 3 was drilled, beginning at 120 feet below land surface and ending at 500 feet below land surface. The chloride concentrations in the samples collected from 120 feet and 500 feet below land surface were 45 mg/l and 90 mg/l, respectively. The chloride concentrations in these samples never exceeded 90 mg/l. A packer test is a procedure used to isolate a particular well interval for testing. It is performed using an inflatable packer on the drill stem, which is placed at the interval to be blocked. The packer is inflated with water or air to isolate the interval to be sampled. A packer test can be used to collect water samples for analysis. Several water quality grab samples were collected in packer tests at specific depth intervals at Test Site 1. At the interval of 331-355 feet below land surface one sample was taken with a chloride concentration of 672 mg/l. At the interval of 331-400 feet below land surface, one sample was taken with a chloride concentration of 882 mg/l. Finally, at the interval of 442-500 feet below land surface two samples were taken with chloride concentrations of 2,366 mg/l and 2,2712 mg/l. Several water quality grab samples were collected in packer tests at specific depth intervals at Test Site 3At the interval of 270-295 feet below land surface, two samples were taken with chloride concentrations of 74 mg/l and 450 mg/l. At the interval of 340-400 feet below land surface, two samples were taken with chloride concentrations of 64 mg/l and 134 mg/l. Finally, at the interval of 445-500 feet below land surface, two samples were taken with chloride concentrations of 1,458 mg/l and 2,010 mg/l. No packer test samples were collected at Test Site 2, where it was clear that water quality was too poor to be used as a fresh groundwater source. The packer test samples collected at Test Sites 1 and 3 were collected using a higher pumping rate than typically recommended by the DEP and the United States Environmental Protection Agency (EPA). Consequently, the chloride concentrations in these samples are probably higher than the chloride concentrations found in the undisturbed groundwater at those depths. Since the packer sits on top of the borehole and restricts flow from above, it generally is reasonable to assume that a packer test draws more water from below than from above the packer. However, if transmissivity is significantly greater just above the packer, it is possible that more water could enter the packer from above. Seven water quality grab samples were collected every 12 hours during the 2001 APT at Test Site 1. The chloride concentrations in the first and last grab sample were 59 mg/l and 58 mg/l, respectively. Seven water quality grab samples were collected every 12 hours during the 2001 APT at Test Site 3. The chloride concentrations in the first and last grab samples were 19 mg/l and 52 mg/l, respectively. Nine water quality grab samples were collected every 12 hours during the 2003 aquifer performance test at Test Site The field-measured chloride concentrations in the first and last grab samples were 56 mg/l and 55 mg/l, respectively. The laboratory measured chloride concentrations in the first and last grab samples were 66 mg/l and 74 mg/l, respectively. The average chloride concentration for the water samples collected during the three APTs at Test Sites 1 and 2 was about 50 mg/l. Water is composed of positively charged analytes (cations) and negatively charged analytes (anions). When cations predominate over anions, the water is said to have a positive charge balance; when anions predominate over cations, the water is said to have a negative charge balance. Theoretically, a sample of water taken from the groundwater system should have a charge balance of zero. However, in real life this does not occur because every sample contains some small trace elements that affect its charge balance. Therefore, in the field of hydrogeology, a positive or negative charge balance of 10 percent or less is accepted as a reasonable charge balance error, and this standard has been incorporated in the permit conditions recommended by the District for the City’s permit. With one exception, all the water quality samples collected by BFA from Test Sites 1-3 had an acceptable charge balance. The one exception was a sample collected from the packer interval of 270-295 feet below land surface at Test Site 3 with a chloride concentration of 74 mg/l. This sample has a positive charge balance of 32.30 percent. The sample collected from the packer interval of 270- 295 feet below land surface at Test Site 3 has an overabundance of cations probably caused by grouting and cementing of the packer prior to taking the sample. Since chloride is an anion and not a cation, any error associated with this sample would not effect the validity of the 74 mg/l chloride concentration measured in this sample. This conclusion is also supported by the fact that two samples were collected from the same well at a packer interval of 340-400 feet below land surface with acceptable charge balances and they contained chloride concentrations of 64 mg/l and 134 mg/l. The District’s experts, Richard Burklew and David Toth, believe the 450 mg/l chloride concentration measured in a sample taken from the packer interval of 270-295 feet below land surface at Test Site 3 is a faulty measurement and should be discarded as an outlier. Dr. Toth testified that the sodium to chloride ratio indicates there was a problem with this measurement, which would call into question the reported chloride value. In 2004 and 2005, the City collected SAS water quality samples from Test Sites 4 and 6 and Monitor Wells MW-1 and RW-1 near Test Site 1. The samples were analyzed for all applicable water quality standards, which might preclude use of water from the SAS extraction wells to directly augment wetlands. The analyses found that the SAS water quality near the proposed extraction wells was very similar to the SAS water quality near the Area IV production wells and that water could be applied to the wetlands without any adverse water quality consequences. Area IV UFAS Flow Patterns and Basin Boundaries Although the United States Geologic Survey (USGS) potentiometric surface maps do not show any data points in the vicinity of the proposed Area IV Wellfield, and they are not sufficient by themselves to formulate opinions regarding the future operation or impacts of the proposed wellfield, Petitioners contend that these potentiometric surface maps demonstrate that the freshwater found in the UFAS at the Area IV Wellfield is due to local freshwater recharge only and not freshwater flow from the northwest. They point to a regional report indicating that there is a groundwater basin divide just north of the Area IV Wellfield. This report is based on a 1980 USGS potentiometric surface map. However, another regional report indicates that the groundwater basin divide occurs south of the Area IV Wellfield. This report is likely based on a 1998 USGS potentiometric surface map. Because of the lack of data points in rural northwest Brevard County, the City did not rely on any groundwater basin divide maps, but rather collected site specific information regarding the proposed Area IV Wellfield. The District’s expert and the Petitioners’ own expert (the sponsor of Petitioners' potentiometric surface map exhibits) noted several errors in the flow direction arrows added by Petitioners to the maps. In addition, after reviewing the potentiometric surface maps presented by Petitioners, the District’s expert concluded that, in addition to local freshwater recharge, the predominant flow into the vicinity of the Area IV Wellfield is generally from the northwest and southwest. To confirm his opinion, the District’s expert examined the head difference data collected in July 2006. At well UF-1S, the UFAS observation well at site 1, the elevation in the well was 16.27 NGVD. At site 3, which is southeast of site 1, the elevation in the UFAS observation well was 15.68 NGVD. At site 2, which is southeast of site 3, the elevation in the UFAS well was 13.87 NGVD. Since water generally flows from the highest to lowest head measurements, these measurements indicated that water would have been flowing from the northwest to the southeast in the vicinity of Area IV. However, the potentiometric surface can change both seasonally and yearly; likewise, the basin boundaries may also change. SAS and UFAS Drawdown Predicting drawdown in the SAS and UFAS in the vicinity of the proposed Area IV Wellfield is important to several permitting criteria, including interference with existing legal uses and impacts on wetlands, both of which relate to the public interest. During the permit application review process, the City submitted a succession of models to provide reasonable assurance that the proposed Area IV Wellfield would not result in unacceptable drawdown. Initially, BFA prepared and submitted groundwater flow simulations of the Area IV Wellfield prepared using an analytical model known as the “Multi-Layer/SURFDOWN Model.” Although the District initially accepted the submission as providing reasonable assurance to support the District's initial TSR, Miami Corporation petitioned and criticized the City's model as not actually providing reasonable assurance, both because of its predicted SAS drawdown and because it was an analytical model (which can only represent simple conditions in the environment, assumes homogenous conditions and simple boundary conditions, and provides only a model-wide solution of the governing equation). By comparison, a numerical model allows for complex representation of conditions in the environment, heterogeneous conditions and complex boundary conditions, and cell-by-cell iterative solutions of the governing equation that are typically performed by a computer. Over the past 10 to 15 years, a numerical model called MODFLOW has become the standard in groundwater modeling throughout the United States and much of the world. All of the Florida water management districts utilize MODFLOW or are familiar with it, so it is a model of choice today for groundwater flow modeling. Despite Miami Corporation's petition, the City and the District maintained that reasonable assurance had been given that operation of Area IV would not result in unacceptable drawdown. Miami Corporation's petition was scheduled for a final hearing in June 2005 that was continued until September 2005 after the first revised TSR was issued in May 2005. The final hearing was continued again until February 2006 to allow discovery and hearing preparation by Vergie Clark, who filed her petition in July 2005. As the case proceeded towards a February 2006 final hearing on the pending petitions, the City eventually made what actually was its second attempt to develop a calibrated MODFLOW model of the Area IV Wellfield. Unbeknownst to the District, BFA already had attempted to develop a MODFLOW Model of the Area IV Wellfield in 2004, with the assistance of Waterloo Hydrogeologic, Inc. (WHI) (which later was retained as Petitioners’ consultant in this case in a reverse of the Hartman client switch). When BFA ended its efforts with WHI, their efforts to calibrate a MODFLOW model for Area IV that would predict acceptable drawdown was unsuccessful, and none of those modeling efforts were submitted or disclosed to the District. In the fall of 2005, the City turned to another consultant, SDI, to attempt to develop a calibrated MODFLOW Model of the Area IV Wellfield. SDI initially prepared a so- called MODFLOW model equivalent of the Multi-layer/SURFDOWN Model prepared by BFA. It was presented to District staff at a meeting held in January 2006 for the purpose of demonstrating to District staff that the MODFLOW model equivalent of the Multi- layer/SURFDOWN Model generated results for the Area IV Wellfield that were not very different from the results obtained by BFA using their Multi-layer/SURFDOWN Model. Petitioners criticized several weaknesses in the MODFLOW equivalent model and maintained that the modeling efforts to date did not give reasonable assurance of no unacceptable SAS drawdown. By this time, the District had decided to retain Dr. Peter Huyakorn, a renowned modeling expert. Based on his recommendations, the District required the City to produce a calibrated MODFLOW model of Area IV (as well as numerical solute transport modeling, which will be discussed below). The scheduled final hearing was continued until September 2006 to allow time for this work to be completed, discovered, and evaluated. After the continuance, the City had SDI prepare a calibrated MODFLOW model to predict the drawdown that would result from operation of Area IV. SDI produced such a model in March 2006. This model predicted less drawdown. Specifically, a steady-state simulation of a 2.75 mgd withdrawal from the proposed 15 UFAS production wells and a 0.18 mgd withdrawal from the four proposed SAS extraction/wetland augmentation wells predicted the maximum drawdown of the surficial aquifer to be less than 0.5 foot (which, as discussed infra, would be acceptable). (UFAS drawdown, which is not an issue, was predicted to be an acceptable 12 feet.) But Petitioners questioned the validity of the model for several reasons, including its suspect calibration. Dr. Huyakorn also had questions concerning the calibration of SDI's March 2006 MODFLOW model, but subsequent work by SDI satisfied Dr. Huyakorn and the District, which issued the TSR and proposed CUP at issue in May 2006 based in part on SDI's March 2006 MODFLOW model, despite Petitioners' criticisms. The final hearing was continued until September 2006 to give Petitioners time to complete discovery on SDI's March 2006 MODFLOW model (as well as the City's new solute transport modeling, which is discussed, infra). To calibrate its March 2006 MODLFOW, SDI first used a transient MODFLOW model to simulate data from the 4-day aquifer performance test (APT) from the Area IV Wellfield sites (the transient APT calibration). (A transient model is used to analyze time-dependent variable conditions and produces a time- series of simulated conditions.) Then, after calibrating to the APT data, SDI used a steady-state, non-pumping MODFLOW model (a time-independent model used to analyze long-term conditions by producing one set of simulated conditions) to simulate the static head difference between the SAS and UFAS (the steady- state head difference calibration). If the head difference simulated in the steady-state calibration run did not match the measured head difference, the ICU leakance was adjusted, and then the revised parameters were rechecked in another transient APT calibration run. Then, another steady-state head difference calibration run was performed in an iterative process until the best match occurred for both calibration models. In order to achieve calibration, SDI was required to make the ICU leakance value several times tighter than the starting value, which was the value derived in the site-specific APT using conventional curve-matching techniques (and relatively close to the values ascribed to the region in general in the literature and in two regional models that included Area IV near the boundary of their model domains--namely, the District's East Central Florida (ECF) model, which focused on the Orlando area to the south and west, and its Volusia model, which focused on Volusia County to the north). SDI's calibrated ICU leakance value derived from calibration to observed static head differences is more reliable than an ICU leakance value derived from an APT using conventional curve-matching techniques. That leaves a question as to the quality of the static head difference measurements used for SDI's calibration. BFA took static head measurements at SAS and UFAS monitor wells located at Test Sites 1, 2 and 3 in January 2004, April 2004, and July 2006. On each occasion, a downward head gradient was noted at each site, meaning the water table (i.e., the SAS) had a higher elevation than the potentiometric surface of the UFAS. In January 2004, the measured head difference at Test Sites 1, 2 and 3 were 6.2 feet, 5.5 feet and 5.9 feet, respectively. In April 2004, the measured head differences at Test Sites 1 and 3 were 8.1 feet and 8.1 feet, respectively. In July 2006, the measured head differences at Test Sites 1, 2 and 3 were 8.6 feet, 6.6 feet and 9.3 feet, respectively. The average of these observed head differences for the Area IV Wellfield was 7.46 feet. BFA's static head difference measurements included both wet and dry seasons. The measurements do not show significant differences between seasons and suggest that static head difference remains fairly constant at the Area IV Wellfield year round. This is typical of head difference data collected from hundreds of other Florida locations because the hydrologic systems seek equilibrium. Petitioners questioned taking an average of the head difference measurements because the region had experienced a rainfall deficit of 17 inches over the 12 months prior to time the measurements in July 2006 were taken. By itself, a rainfall deficit would not affect head difference measurements because the hydrologic system would seek equilibrium. But there was evidence of a possibly significant rainfall near Area IV not long before the July 2006 measurements. If significant rain fell on Area IV, it could have increased the static head differences to some extent. But there was no evidence that such an effect was felt by Area IV. Petitioners also contend for several other reasons that the static head differences used by SDI as a calibration target were "not what they are cracked up to be." They contend that "limited spatial and temporal extent . . . renders them inappropriate calibration targets." But while the site-specific static head difference measurements were limited, and more measurements at different times would have increased the reliability of the average static head difference used in SDI's steady-state calibration, the head difference measurements used were adequate. For a groundwater model of Area IV, they were as good as or better than the head differences used by Petitioners' expert modeler, Mr. LaFrenz of Tetratech, who relied on SAS and UFAS head levels from the regional-scale ECF model, which were measured by the United States Geological Survey (USGS) in May and September 1995. Petitioners also contended that the measured head differences used by SDI for the steady-state calibration of the March 2006 MODFLOW model were significantly higher than other measured head differences in the general vicinity of Area IV. One such location is Long Lake, which has saltwater and an obviously upward gradient (i.e., a negative head difference between the SAS and UFAS), whereas SDI's MODFLOW depicts it as having a five-foot downward gradient (positive head difference). However, all but one of those measurements (including from Long Lake) were from locations five or more miles from Area IV. In addition, the accuracy of the measurements from the closer location (and all but one of the more distant locations) was not clear, so that the seemingly inconsistent head differences measurements may not be indicative of actual inconsistency with the head difference measurements used by SDI. Petitioners also accused the City and its consultants of "playing games with specific yield" to achieve calibration with a tighter-than-appropriate ICU leakance value. But the City and the District adequately explained that there was no merit to the accusations. It was appropriate for SDI to use just the relatively small specific storage component of SAS storativity (the 0.001 value) in its transient calibration runs, instead of the larger specific or delayed yield component. Storativity is not utilized at all in the MODLFOW steady-state calibration runs and steady-state simulations. Based on the foregoing, it is found that Petitioners' factual disputes regarding SDI's calibrated ICU leakance value do not make the City's assurance of no unacceptable drawdown provided by its MODFLOW simulations unreasonable. That leaves several other issues raised by Petitioner with regard to the SDI's March 2006 MODFLOW model. In calibrating its MODFLOW model, SDI utilized a value for the MCU leakance that was twice as leaky as the published literature values for the area, which Petitioners claim would reduce simulated SAS drawdown. Although the use of a higher MCU leakance value in the model may result in a prediction of less SAS drawdown, the actual effect, if any, on the predicted drawdown, was not made clear from the evidence. In any event, an MCU leakance value for Area IV calibrated to site-specific data is more reliable than regional values. Petitioners also accused the City and its consultants of using inappropriate or questionable boundary conditions, topography, and depth to the water table. They also contend that incorrect topography--namely, a nonexistent five-foot ridge or mound northwest of Area IV--provides an artificial source of water for SDI's March 2006 MODFLOW model. But the boundary conditions for SDI's March 2006 MODFLOW model were clear from the evidence and were appropriate; and SDI's topography and water table depth were reasonably accurate (and on a local scale, were as or more accurate than the USGS topographic maps Petitioners were comparing). Besides, Dr. Huyakorn ran the Tetratech model with SDI's leakance value instead of Tetratech's value and got virtually the same drawdown results, proving that differences in topography between the two models made virtually no difference to the drawdown predictions of either model. As for the so-called "flow from nowhere," particle-tracking simulations conducted by experts from both sides established that, with pumping at 2.75 mgd, no water would enter the Area IV production zone from anywhere near the five-foot ridge area for at least 100 years. This gave reasonable assurance that the five-foot ridge or mound had no effect on the simulated results from SDI's March 2006 MODFLOW model. Petitioners also contend that the City's failure to simulate drawdown from pumping during the dry season, as opposed to a long-term average of wet and dry seasons, constituted a failure "to provide reasonable assurances as to the conditions that can be expected as a result of the anticipated operation of the wellfields." But the evidence was clear that long-term, steady-state groundwater model simulations are appropriate and adequate to provide reasonable assurance for CUP permitting purposes. See "Drawdown Impacts," infra. By definition, they do not simulate transient conditions such as dry season pumping. The SDI model predicts a maximum drawdown, from a 2.75 mgd withdrawal from all fifteen UFAS production wells and a 0.18 mgd withdrawal from the four SAS extraction wells, of slightly less than 0.5 feet in the SAS and of 12.0 feet in the UFAS in the immediate vicinity of the Area IV Wellfield. SDI’s model predicts a drawdown of 0.11 feet (approximately 1 inch) in the SAS and a drawdown of 2.2 feet in the UFAS at Ms. Clark’s property, which is located approximately 1 to 1.5 miles north of the Area IV Wellfield. It is found that SDI's March 2006 MODFLOW model for Area IV is the best such model in evidence. That is not to say that the drawdown predicted by SDI's model is a certainty. The other models were not proven to be better than SDI's, but they did demonstrate that simulated results would vary significantly in some cases if SDI's calibration and calibrated ICU leakance values were incorrect. Having more good hydrologic information would have made it possible to reduce the uncertainties present in SDI's model, but it is found that SDI's March 2006 MODFLOW model was sufficient to give reasonable assurance as to SAS and UFAS drawdown from pumping at 2.75 mgd from the UFAS and 0.18 mgd from the SAS for wetland augmentation. Drawdown Impacts As indicated, once drawdown is predicted with reasonable assurance, both interference with existing legal uses and impacts on wetlands, which relate to public interest, must be evaluated. Interference with Legal Uses Using SDI's March 2006 MODFLOW model, the City gave reasonable assurance that the drawdown predicted from pumping at 2.75 mgd from the UFAS and 0.18 mgd from the SAS for wetland augmentation will not interfere with existing legal users. The nearest existing legal users are located about one mile northwest and two miles east/southeast of the nearest proposed production well. The City’s MODFLOW modeling scenarios indicate that maximum drawdown in the SAS will be less than 0.5 feet and minimal (at most 2.2 feet) in the UFAS at the nearest active existing legal users. Obviously, drawdown would be much less at 0.5 to 0.75 mgd from the UFAS (with probably no wetland augmentation required). As indicated, the drawdown predicted by SDI's March 2006 MODFLOW model is not a certainty. Although not likely based on the more persuasive evidence, if actual drawdown approximates the drawdown predicted by the Tetratech model, there could be interference with existing legal users. (The Tetratech model predicts that the long-term average reduction in the water table of approximately 1.6 feet of drawdown near the center of the wellfield and drawdown of 0.4 feet to 0.5 feet extending out more than a mile from the proposed Area IV Wellfield.) There probably still would be no interference with existing legal users with pumping at 0.5 to 0.75 mgd from the UFAS (with probably no wetland augmentation required). In the event of that much actual drawdown and unanticipated interference from the City’s pumping, “Other Condition” 15 of the proposed permit requires that it be remedied. See Finding 36, supra. There is no reason to think such interference could not be remedied. Environmental Impacts from Drawdown Miami Corporation’s property in the vicinity of the proposed Area IV Wellfield is a mosaic of pine flatwoods uplands interspersed with wetlands. The wetlands are mostly cypress swamps, with some areas of hardwood swamp, marshes, and wet prairies. Miami Corporation's property is managed for timber and is also used for cattle grazing and hunting. Miami Corporation has constructed a network of roads and ditches on its property, but overall the wetlands are in good conditions. The areas east and west of the proposed Area IV Wellfield consist of cypress strands, which are connected wetlands. Compared to isolated wetland systems, connected wetlands are typically larger, deeper, and connected to waters of the state. They tend to have hardwood wetland species. Connected wetlands are less vulnerable to water level changes brought about by groundwater withdrawals because they tend to be larger systems and have a greater volume of water associated with them. They are able to withstand greater fluctuations in hydroperiods than isolated herbaceous wetland systems. Isolated wetland systems are landlocked systems. They tend to be smaller in size and shallower than connected wetland systems. Isolated systems tend to be more susceptible to changes in hydrology than larger connected systems. The upland plant communities present near the proposed Area IV Wellfield include pine flatwoods that have been altered by Miami Corporation's timber operations. There is a large area surrounding the Area IV Wellfield to the north that consists of forest regeneration after timbering. There was evidence of the presence of the following listed animal species at the site of the proposed Area IV Wellfield: wood storks, roseate spoonbills, ibis, bald eagles, Sherman fox squirrels, American alligator, sandhill cranes, wood storks, black bear, and indications of gopher tortoises. The habitat in the vicinity also supports a number of other listed species that were not observed. The following listed plants species were also observed during the environmental assessment and site visits: hooded pitcher plants, water sundew, pawpaw and yellow butterwort. Ms. Clark’s property adjoins a cut-over cypress swamp on the western side of her property, and there is also a small man-made fish pond in her backyard. Some clearing has taken place in the wetland system on the back portion of Ms. Clark’s property. What appears to be a fire break on Ms. Clark’s property encroaches upon the wetland system. The wetlands on Ms. Clark’s property have experienced some human activities such as trash dumping and clearing, which have resulted in a degradation of those systems. Some trees within the wetland systems on the back portion of Ms. Clark’s property have been logged. For the most part, the hydrology appears to be normal. However, some invasive species have encroached upon the system due to the clearing that has taken place. There was no evidence of listed plant or animal species present on Ms. Clark’s property. If drawdown is of the magnitude predicted by the SDI's March 2006 MODFLOW model, unacceptable environmental impacts from drawdown would not be anticipated. At 0.5 or 0.75 mgd, there clearly would not be any unacceptable environmental impacts. In addition, “Other Condition” 12 of the proposed permit requires the City to perform extensive environmental monitoring. The environmental monitoring plan proposed for the Area IV Wellfield provides reasonable assurance that changes to wetland hydrology and vegetation due to groundwater withdrawals will be detected before they become significant. “Other Condition” 12 of the proposed permit prohibits the City from pumping any water from the production wells until the monitoring network is in place. The baseline monitoring will give a clear indication of the existing conditions prior to the production wells coming on-line. Once the production wells are online, the City will continue the same procedures that they conducted prior to the production wells coming online. This will allow the City and the District to monitor the effects of pumping. The City’s proposed environmental monitoring plan is adequate to detect drawdown impacts and is consistent with environmental monitoring plans that have been developed for other wellfields throughout the State of Florida. Since the City has given reasonable assurance that there will not be environmental harm from drawdown, the proposed permit does not propose mitigation. If unanticipated harm is detected, “Other Condition” 24 of the proposed permit requires the City to implement an avoidance and minimization plan to rehydrate the wetlands and restore the water levels to normal levels and natural hydroperiods by augmenting the water in the affected wetlands with water pumped from SAS wells and piped to the affected wetlands. “Other Condition” 24 includes specific timeframes for implementing wetland rehydration in the event unanticipated impacts were to occur. In addition, the City could, on its own, change its pumping schedules. If an impacted wetland is near a particular well, the City could reduce or shut off water withdrawals from that well and thereby restore water levels in the wetland. Direct augmentation of wetlands has been used at other facilities such as those of Tampa Bay Water and Fort Orange. The direct augmentation at these other sites appears to be effective. Direct augmentation of wetlands has proven to be a feasible means of offsetting adverse changes in wetlands due to groundwater withdrawals, at least in some circumstances. There is a viable source of water that can be utilized to augment these wetland systems, namely a large canal south of the production wells. Based on the predicted drawdown, SDI estimated the quantity of water needed for implementation of the avoidance and minimization plan to be 0.18 mgd. The water quality in the canal is comparable to the water quality within any wetland systems that would be affected by drawdown. The City plans to have its augmentation plan in place prior to the production wells coming online. In that way, if changes are observed within the wetland systems, the augmentation plan could be implemented in relatively short order to alleviate any impacts that might be occurring as a result of the production wells. The success of the augmentation plan depends on the extent of actual drawdown. If actual drawdown approximates Tetratech's predictions, environmental impacts would not be acceptable, and there would not be reasonable assurance that the augmentation plan would be sufficient to mitigate the environmental impacts. If drawdown is of the magnitude simulated in the City’s MODFLOW model, reasonable assurance was given that, if needed, the avoidance and minimization plan developed for the Area IV Wellfield would be capable of offsetting any adverse changes in wetlands and other waters detected through the environmental monitoring plan. If the City pumps not more than 0.75 mgd, the avoidance and minimization plan developed for the Area IV Wellfield probably would be unnecessary but certainly would be capable of offsetting any adverse changes in wetlands and other waters that would be detected through the environmental monitoring plan. If unanticipated environmental harm occurs due to excessive actual drawdowns, and the harm cannot be avoided either by the augmentation plan or by altering the pumping schedule, or both, the District can revoke all or part of the permit allocation under “Other Condition” 23. This ability gives reasonable assurance that no unacceptable environmental harm will occur even if actual drawdown approximates Tetratech's predictions. Saltwater Up-coning and Intrusion Predicting saltwater movement towards the production zone of the proposed Area IV Wellfield is important to several permitting criteria, including interference with existing legal uses and the ability of the resource to provide the requested allocation of freshwater, both of which relate to the public interest. During the permit application review process, the City submitted a succession of models to provide reasonable assurance that the proposed Area IV Wellfield would not result in unacceptable saltwater intrusion. Initially, BFA prepared and submitted solute transport simulations using an analytical model known as the “UPCONE Model.” The District initially accepted the submission as providing reasonable assurance to support the District's initial TSR. Despite Miami Corporation's petition, the City and the District maintained that reasonable assurance had been given that operation of Area IV would not result in unacceptable saltwater intrusion based on the "UPCONE Model." As indicated, supra, Miami Corporation's petition was scheduled for a final hearing in June 2005, but the hearing was continued until February 2006. As the case proceeded towards a final hearing in February 2006, the City not only turned to SDI to develop the numerical MODFLOW model, it also turned to SDI to develop a numerical solute transport model that would couple the MODFLOW groundwater flow equations with advection dispersion solute transport equations to simulate the movement of variable density saline groundwater in response to stresses. In addition to the initial boundary conditions, aquifer parameters and stresses specified for a groundwater model, a solute transport model requires solute parameters such as chloride concentrations, dispersivity and effective porosity. SEAWAT is a solute transport model code that combines the MODFLOW, which provides the groundwater flow component, with the MT3DMS code, which provides the mass transport component. When coupled with MODFLOW, the MT3DMS code tracks the movement of variable density water and performs internal adjustments to heads in the flow model to account for water density. Like MODFLOW, SEAWAT is capable of simulating the important aspects of the groundwater flow system, including evapotranpiration, recharge, pumping and groundwater flow. It also can be used to perform both steady-state or transient simulations of density- dependent flow and transport in a saturated zone. It was developed in the late 1990s and is rapidly becoming the standard for solute transport modeling throughout the United States. It is used by many water management agencies in the State of Florida. Initially, SDI used SEAWAT version 2.1 to simulate movement of saline water towards the Area IV Wellfield. The first such simulation was prepared in March 2006 using manually- adjusted head values along the eastern model boundary. It incorporated SDI's March 2006 MODFLOW model. The District, in consultation with Dr. Huyakorn, required SDI to perform what was termed a "sensitivity run" with reduced chloride concentrations in the eastern boundaries (5,000 mg/l versus 19,000 mg/l) to better match actual measurements recorded in wells in the vicinity. In April 2006 SDI prepared and submitted those simulations. After reviewing the March and April 2006 SEAWAT 2.1 simulations, Petitioners' consultants criticized the manner in which starting chloride concentrations in the vicinity of the Area IV Wellfield were input into the models. In those models, SDI had input initial chloride concentration at 50 mg/l throughout the depth of the UFAS. The model was then run for 100 years with no pumping to supposedly arrive at a reasonable starting chloride concentration for the UFAS. Then, the model was run for 25 years with pumping at 2.75 mgd. However, the initial chloride concentrations at the beginning of the pumping run still did not comport well with actual measurements that were available. After Petitioners raised the issue of the starting chloride concentrations assigned to the UFAS in SDI's March and April 2006 SEAWAT 2.1 runs, the final hearing was continued until September 2006 to give Petitioners time to complete discovery on those models (as well as on SDI's March 2006 MODFLOW model, as discussed supra). During a deposition of Dr. Huyakorn in July 2006, he recommended that the District require SDI to perform another simulation (also termed a "sensitivity run") using starting chloride concentrations more closely comporting with known measurements. (There also were some changes in the constant chloride concentrations that were part of the boundary conditions on the western side of the model domain.) This resulted in SDI's early August 2006 SEAWAT 2.1 simulation of 15 years of pumping at 2.75 mgd. Petitioners also criticized the City for not using a newer version of SEAWAT, called SEAWAT 2000, as well as for using chloride concentrations as inputs for its SEAWAT 2.1 model simulations instead of total dissolved solids (TDS). (SEAWAT 2.1 required input of TDS, not chlorides; SEAWAT 2000 allowed chlorides to be input. Not until the last day of the final hearing was it pointed out by Dr. Huyakorn that using chlorides instead of TDS caused SDI's SEAWAT 2.1 simulations to over- predict saltwater intrusion.) As a result of Petitioners' criticisms, the City had SDI re-run both the April and early August SEAWAT 2.1 models in late August 2006 using SEAWAT 2000 (which the City and the District also termed "sensitivity runs.") Because the SEAWAT 2000 simulations would be time- barred from use in the City's case-in-chief under pre-hearing requirements, and whether they could be used in rebuttal could not be determined at that point in time, the City requested another continuance, this time until December 2006, to give Petitioners time to discover the SEAWAT 2000 model simulations. During Petitioners' discovery of SDI's August SEAWAT 2000 model simulations, it came to SDI's attention that SDI was not calculating mass outputs from the model correctly. Those errors were corrected by SDI in September 2006. SDI's corrected August 2006 SEAWAT 2000 simulation predicted that, after 15 years of pumping at 2.75 mgd, the chloride concentration in the Area IV production wells would increase from 54 mg/l to 227 mg/l. After the 15-year pumping run, SDI's corrected August 2006 SEAWAT 2000 simulation predicted that the chloride concentration in several of the southernmost production wells would exceed 250 mg/l. At 17.5 years of the pumping run simulation, the simulation predicted that the entire wellfield would have chlorides in excess of 250 mg/l. That prediction does not, however, mean the chloride concentration in these wells will exceed 250 mg/l in actual operation. The SDI model contains several conservative assumptions that magnified the potential chloride concentrations in those wells. First, it was assumed all the production wells would be drilled to 250 feet below land surface, while the City will likely drill the southernmost wells to a shallower depth. Additionally, the wellfield production rate used in the model was not optimized for water quality. Finally, the model was not set up to simulate a wellfield operation plan that turned wells on and off based on the saline water monitoring plan. For the sake of simplicity, the model assumed that all the wells would operate 24 hours a day, 7 days a week, for the entire 15 year period. Petitioners continued to maintain for several reasons that SDI's SEAWAT models do not provide reasonable assurance that operation of the Area IV Wellfield will not result in unacceptable saltwater intrusion. Chlorides versus TDS Petitioners criticized SDI's corrected SEAWAT 2000 model for still not inputting chlorides correctly. While SEAWAT 2000 allows the input of chlorides instead of TDS (and input of chlorides instead of TDS is recommended since chloride is a more stable chemical than some of the other components of TDS), they must be input correctly. However, while Petitioners demonstrated that the chlorides were not input correctly, causing the model to under-calculate fluid density, Dr. Huyakorn clarified in rebuttal that under-calculating fluid density caused SDI's SEAWAT 2000 models to over-predict saltwater intrusion into the wellfield. Starting Chloride Conditions Petitioners continued to question the representation of initial chloride concentrations in the SEAWAT models. SDI's SEAWAT models included multiple vertical grid layers to represent conditions better than the layering used in the MODFLOW set-up. The SAS was represented by layer 1, the ICU by layer 2, the UFAS by layers 3 through 14, the MCU by layer 15, and the LFAS by layers 16 and 17. SDI used a chloride concentration of 0 mg/l for the SAS and ICU in its August 2006 SEAWAT model, which probably does not represent the actual initial condition but is probably close enough since the SAS is recharged by rainfall that typically has very low (1 to 2 mg/l) chloride levels. SDI used a chloride concentration of 2,500 mg/l for the MCU and a chloride concentration of 5,000 mg/l for the LFAS in its August 2006 SEAWAT model, which are reasonable initial chloride values for the Area IV Wellfield. To develop the initial chloride concentration conditions of the UFAS for its August 2006 SEAWAT model, SDI first plotted the available water quality data (63 well-data points) on a map of the Area IV Wellfield area. After examining the distribution of the data, SDI divided the UFAS into two layers to represent the upper UFAS (above –200 feet NGVD) and the lower UFAS (below –200 feet NGVD). Then, using various scientific studies containing chloride concentration maps, groundwater recharge/discharge maps (recharge indicating an area is more likely to have low chlorides in the UFAS and discharge indicating an area is more likely to have high chlorides), and maps showing the shape and extent of the freshwater lens in the area, plus SDI’s own knowledge of groundwater flows and expected higher chloride concentrations along the coast and St. Johns River, SDI used scientifically accepted hand-contouring techniques to represent the initial chloride concentration conditions of the upper and lower UFAS on maps. SDI’s two hand- contoured chloride concentration maps were reviewed and accepted by the District’s experts and reflect a reasonable representation of the initial chloride concentration conditions in the UFAS in the Area IV Wellfield. Using the two hand- contoured chloride concentration maps, SDI input the chloride concentration values from those maps into its August 2006 SEAWAT model. The chloride concentration values from the upper UFAS map were input into layers 3 through 7 of SDI’s August 2006 SEAWAT model. The chloride concentration values from the lower UFAS map were input into layers 11 through 14 of SDI’s August 2006 SEAWAT model. SDI input the average of the chloride concentration values from the upper and lower UFAS layers into the middle UFAS (layers 8 through 10). It is appropriate to average the chloride values between the upper and lower UFAS in the Area IV Wellfield because the saline water interface is not that sharp and occurs near the bottom of the UFAS (unlike conditions 11 miles to the south). Petitioners accuse SDI, the City, and the District of ignoring unfavorable chloride data in setting up its August 2006 SEAWAT 2000 model. The evidence was that all chloride data was considered and evaluated. Mr. Davis and the District's experts did not rely on the 450 mg/l chloride packer test measurement taken from the interval between 270 and 295 feet at Test Site 3 in preparing the contour maps of the UFAS because the chloride measurement was deemed inaccurate because the sodium to chloride ratio is out of balance. Mr. Davis and the District's experts did not utilize the 2,336 mg/l and 2,717 mg/l chloride concentration packer test measurements at 442-500 feet below land surface at Test Sites 1 and 3 to prepare the chloride contour maps for the UFAS because they believed these measurements from the MCU. Mr. Davis and the District's experts deemed it inappropriate to utilize a 845 mg/l chloride value reported for Test Site 2 to prepare the chloride contour for the lower portion of the UFAS because this sample was collected at just 210 feet below land surface and because a 500 mg/l contour line separates a 882 mg/l measurement at Test Site 1 from a 134 mg/l measurement at Test Site 3. The decision not to include the Test Site 2 data also is supported by the particle tracking modeling prepared by the Petitioners and the City using the groundwater component of the SDI SEAWAT model and the TetraTech model, which show that water from Test Site 2 will not enter the Area IV production wells for at least 100 years with pumping at 2.75 mgd. The chloride contour maps developed by Mr. Davis and the District experts were consistent with previous studies conducted by the USGS and the District in the region. For example, the chloride contours shown on City Exhibit 142 for the upper portion of the UFAS are generally consistent with Figure 35 of the 1990 USGS Report by Charles Tibbals and Figure 15 of the 1999 District Report by Toth and Boniol. The two chloride contour maps developed by Mr. Davis and the District's experts are a reasonable representation of the existing water quality of the UFAS in the region of the Area IV Wellfield based on the available data. Mr. Davis used the 882 mg/l chloride concentration packer test measurement from the interval between 331 and 400 feet at Test Site 1 as the starting chloride concentration in four grid cells at the bottom of the UFAS, which Petitioners' experts referred to as a "pinnacle" or "column," that were assigned a chloride value of 700 mg/l. While the representation may not have been realistic, and the "pinnacle" or "column" quickly "collapses" when the model begins to run, the representation was a concession to the existence of the datum even though it appeared at odds with water quality collected from a packer test at Test Site 3 at the same depth interval, which was much fresher. District staff agreed with Davis’ approach to representing the saltier packer test measurement from Test Site 1. The initial chloride concentrations developed for the UFAS by Mr. Davis and District staff are not inconsistent with the water quality data collected by the Petitioners’ consultants from Long Lake. The lake is located in an area of the map where the chloride concentration in the UFAS, which discharges into the lake at that location, is between 1,000 and 5,000 mg/l. Mr. Davis decided not to use 2,000 mg/l to represent the bottom layer of the UFAS even though the bottom packer tests performed at Test Sites 1 and 3 showed an average value of 2,000 mg/l at the approximate boundary of the UFAS and the MCU. Instead, he decided to associate this chloride concentration with the MCU because even if the packer had penetrated a portion of the UFAS, he did not believe the measurement was representative of static water quality conditions at that depth. The packers had been pumped for over 4 hours at 25 gpm at Test Site 1 and over 4 hours at 85 gpm at Test Site 3, which could have doubled or tripled the static chloride concentration. As was later shown in sensitivity runs by Petitioners' expert, Dr. Guo, if SDI had incorporated the 2,000 mg/l value at the bottom of the UFAS, the model simulation would have shown unrealistically high initial chloride concentrations in the production wells at the start of pumpage when compared to the water quality measured during the APTs conducted at Test Sites 1 and 3. (While only one well was pumping at a time, versus the 15 in the model simulations, the single APT well was pumping at approximately three times the rate of the 15 wells in the model simulation.) Based on all the evidence, it is found that the chloride concentrations used in SDI’s August 2006 SEAWAT model reflect a reasonable representation of the initial chloride concentration conditions in the UFAS in the Area IV Wellfield and were properly input into that model using an appropriate method. Location of the MCU Related to the last point is Petitioners' claim that the top of the MCU (i.e., bottom of the UFAS) is incorrectly represented in SDI's SEAWAT models at 450 feet below sea level (approximately 425 feet below land surface). They point to literature values indicating that the depth to the MCU is up to 150 feet greater. However, these reports did not include site- specific data or test wells in the vicinity of the Area IV Wellfield or in northern Brevard County. It was reasonable to consider and rely on site-specific information regarding the depth to the MCU in this case. BFA determined the approximate location of the MCU by examining cuttings collected during drilling at APT well sites 1 and 3 and by measuring various properties of the aquifer with down-hole geophysical techniques. Based on the site-specific information obtained, the depth to the MCU was determined to be approximately 450 to 475 feet below land surface or –425 to -450 feet NGVD. The lithologic log for well site 1 indicates the presence of gray/tan limestone between 450 to 460 feet below land surface and light/gray limestone and dolomitic limestone from 460 to 470 below land surface. The lithologic log for well site 3 indicates the presence of tan dolomitic limestone from 450 to 460 feet below land surface and tan limestone and dolomitic limestone from 460 to 470 feet below land surface. According to Petitioners' own expert, Dr. Missimer, the change to a mixture of limestone and dolomite is evidence of the MCU. After examining the video log for well site 1, Dr. Missimer noted a “lithologic change” at 477 feet below land surface (while still disputing BFA's conclusion that the MCU started there.) One characteristic of the MCU is a lower resistivity. At well site 1, a reduction in resistance occurred at approximately 470 feet below land surface. Another characteristic of penetrating the MCU is decrease in flow. The flow meter log for well site 1 suggests a decrease in flow at approximately 450 feet below land surface. On the other hand, it also is true that wells drilled completely into the MCU probably would not produce more than approximately 5 gallons per minute (gpm), whereas the packer test at the bottom of Wellsite 1 was yielding 25 gpm, and the packer test at the bottom of Wellsite 3 was producing 85 gpm. It is possible that the bottom packers were open to both the UFAS and the MCU, which could explain the higher flows. Petitioners maintain that BFA stopped drilling too soon (500 feet below land surface, or 475 feet below sea level) to ascertain the actual depth to the MCU. While it is true that drilling deeper would have made BFA's determination as to the depth to the MCU more convincing and certain, BFA's approximation of the depth to the MCU was reasonable for purposes of SDI's SEAWAT model. To the extent that BFA might have been wrong on the depth to the MCU, there was no convincing evidence that the error would have made SDI's SEAWAT model results unreliable. To the contrary, Dr. Huyakorn testified that, even if SDI put the MCU 75 feet too high, the label given to the interval is not critical to the reliability of the modeling results. More important are the parameters for transmissivity and leakance assigned to aquifers and confining units. Dr. Huyakorn testified that, given the aquifer parameters assigned to the intervals, SDI's SEAWAT modeling results would be reasonably reliable. Saline Movement Impacts As indicated, once chloride concentration changes are predicted with reasonable assurance, both interference with existing legal uses and the ability of the resource to provide the requested allocation of freshwater, which relate to public interest, must be evaluated. Significant saline water intrusion is defined as saline water encroachment which detrimentally affects the applicant or other existing legal users of water, or is otherwise detrimental to the public. (Rule 9.4.2, A.H.). Saline water may encroach from upconing or the vertical movement of saline water into a pumping well, and it may encroach laterally to the well from a saline waterbody like the ocean. The proposed use associated with the four surficial aquifer extraction wells is so minimal that it clearly would not cause saline water intrusion or harm the quality of this proposed source of water. The focus of attention is the production wells. The evidence was sufficient to provide reasonable assurance that the proposed consumptive use from the Area IV Wellfield will not cause significant saline water intrusion; further aggravate currently existing saline water intrusion problems; induce significant saline water intrusion to such an extent as to be inconsistent with the public interest; or harm the quality of the proposed source of water. First, the long-term constant rate pump tests, which were conducted as part of the APT, give some indication of the potential for saltwater intrusion. While only one well was pumping during the tests, water quality did not degrade at pumping rates that far exceeded what would be approved as part of the proposed permit. During four-day pump tests in which the wells at sites 1 and 3 were pumped at approximately 1 mgd, chlorides never exceeded approximately 74 mg/l. Second, while (as with drawdown predicted by the groundwater flow modeling) saltwater movement predicted by the City’s SEAWAT simulations is not a certainty, the simulations gave reasonable assurance that the requested allocation could be withdrawn from the Area IV Wellfield without excessive changes to water quality (specifically chlorides) and that there is an adequate thickness of freshwater at the Area IV Wellfield that could supply the requested allocations of water for 15 years without saline water intrusion, especially since it is unlikely that a number of the wells will actually be constructed to the 250-foot depth assumed in the model, particularly as one moves south along the railroad right-of way. Third, it is even more unlikely that saltwater intrusion will occur before the proposed permit expiration in 2010. Due to the time required to construct the facility, it is anticipated that the Area IV Wellfield will become operational in 2009. Assuming the City seeks to renew the permit, there would be more information on saltwater intrusion for the District to consider on permit renewal. Since the City provided reasonable assurance as to its proposed withdrawals from Area IV, there clearly is reasonable assurance that withdrawal of not more than 0.75 mgd from Area IV would not result in significant saline intrusion. The TSR includes proposed “Other Condition” 11 which requires the installation of saline monitor wells. The spatial distribution of these wells is such that the beginning of water quality degradation or saltwater intrusion, either from upconing or lateral intrusion, would not occur without it being detected by these wells. In addition to these monitor wells, proposed “Other Condition” 14 requires water quality samples to be collected from each production well. These wells are to be sampled quarterly for a suite of parameters, including chlorides. “Other Condition” 25 is proposed as a “safety net” should unanticipated saltwater intrusion occur. If any production well shows a concentration of 250 mg/l chlorides, then this proposed condition would prohibit further use of the well until the chloride concentration drops. If the monitoring shows a chloride concentration in a production well of 200-to- 249 mg/l, the well will be placed on restricted use. A production well may be placed back into regular service once the chloride concentration in the well is below 200 mg/l. Other Issues Other issues raised and maintained by Petitioners in this case include: whether the City has provided reasonable assurance that it owns or controls the property upon which the proposed wellfield will be located; whether the Area IV Wellfield is an economically feasible option; whether the City has provided reasonable assurance that it will be able to implement the project before the expiration date of the proposed permit; whether the proposed CUP is inconsistent with the District's designation of Priority Water Resource Caution Areas; whether the proposed CUP constitutes an impermissible modification of the existing CUPs for Areas II and III; and whether the City failed to pay the appropriate permit fee. Ownership or Control The City has obtained an easement from the Florida East Coast Railway (FEC) to use FEC right-of-way for the City's proposed production wells. It does not yet have ownership or control of land needed for all wetland and saline monitoring sites, or for wetland augmentation if necessary, but intends to acquire the right to use all land needed through negotiation or exercise of eminent domain. Petitioners contend that the FEC easement is insufficient for several reasons: the easement is "without warranty or covenants of title of any kind"; it is impossible to define the precise boundaries of the easement because the easement is defined in terms of distance from the center of a railroad bed that existed in 1866 but no longer exists; and the precise location of proposed production wells is not definite. While the easement is "without warranty or covenants of title of any kind," the evidence is that, if contested, the precise boundaries of the easement would be difficult but not necessarily impossible to define. It is reasonable to anticipate that at least Miami Corporation will contest the legality and extent of the FEC easement. Petitioners allege that there is confusion about the location of the proposed wells because some well locations identified in the City’s permit application did not match the coordinates assigned to certain production wells on the District’s on-line database. Actually, there is no confusion regarding the location of the wells; the well locations identified in the permit application were the well sites used for modeling purposes and for review of the application. District staff explained that the well site locations identified in the District’s database would be finalized after the wells are constructed and the exact locations have been identified using GPS technology. Contrary to Petitioners' contentions, the District’s rules do not require that an applicant own the property where the proposed production wells or monitoring wells are to be located. The District has issued many CUPs where either the subject property or the property associated with the monitoring requirements of the permit are not owned by the applicant. Recent examples include the CUPs for Orange County Utilities and the Orlando Utilities Commission. This makes sense when the applicant has the power of eminent domain or some other credible means of obtaining necessary ownership or control, such as an option contract. The District’s permit application form has a section that requires the applicant to identify who owns or controls the land on which the facility will be located. The District uses this information for noticing and contact information. Contrary to Petitioners' contentions, this section of the permit application form is not intended to create a substantive permitting standard requiring property ownership before a consumptive use permit can be issued. Petitioners argue that proof of ownership or control is necessary to determine whether a drawdown from a proposed water use will adversely affect stages or vegetation on lands other than those owned, leased, or otherwise controlled by the applicant. However, the evidence was that these impacts can be assessed based on the facts of this case. The City's need to eventually obtain ownership or legal control to exercise the rights granted by the proposed CUP may be problematic in this case and is a factor to be considered in the next two issues raised and maintained by Petitioners: whether the Area IV Wellfield is an economically feasible option; and whether the City has provided reasonable assurances that its project can become operational before the expiration date of the proposed permit. But it is not a reason to automatically deny the City's proposed CUP. Economic Feasibility Petitioners argue that the proposed Area IV Wellfield is too expensive and that the expense should be a factor in deciding whether it is in the public interest. But cost to the City is not a factor in determining whether to issue the CUP proposed in this case. Statutes and rules cited by Petitioners on this point do not apply to this CUP determination. See Conclusions of Law 277-279, infra. Implementation Before Expiration Date Litigation of a case filed by Miami Corporation to contest the legality and extent of the City's FEC easement will add to the (cost and) time necessary to implement the project. This additional time was not specifically taken into account by the City in estimating the time it would take to implement the project. The (cost and) time for litigation of the legality and extent of the City's FEC easement could be spared by exercising eminent domain instead. That probably would add to total the cost of eminent domain but might not add appreciably to the time necessary for acquisition of required ownership or control. In an imprecise way, the time for eminent domain proceedings necessary to gain ownership or control of land for monitoring sites and wetland augmentation (without time for litigation of a contest over the legality and extent of the FEC easement, or for using eminent domain instead) was factored into the time estimated for implementation of the project. With this rough estimate, the evidence was that the project could be expedited and completed in 33 months from issuance of a CUP. It is possible but not probable that the project could be implemented in less than 33 months. It is possible and more probable that it will take longer than 33 months to implement the project. In a worst case scenario, it could take as much as 59 months complete the project. But 33 months is a reasonable, if optimistic, estimate (without time for litigation of the legality and extent of the FEC easement, or for using eminent domain instead). As found, the proposed CUP expires at the end of 2010. Given the 33-month estimate for implementation (without time for litigation of a contest over the legality and extent of the FEC easement), the CUP would have to be issued by March 2008 to be completed before expiration. Given that estimate, it would be in operation for six months before expiration. It is likely that the City will apply to renew both the existing CUP for Areas II and III and the proposed CUP for Area IV. It appears from Petitioners' Response to the other PROs that one purpose for their arguments that the proposed CUP for Area IV cannot be implemented before its expiration is to buttress their arguments, already addressed, that there is no need for the proposed CUP for Area IV. Priority Water Resource Caution Area Designation As part of its water supply planning process, the District designates priority water resource caution areas. A priority water resource caution area is an area where existing and reasonably anticipated sources of water and water conservation efforts may not be adequate to supply water for all existing legal uses and anticipated future needs and to sustain the water resources and related natural systems. The area surrounding the Area IV Wellfield was designated as a priority water resource caution area in the District’s 2003 Water Supply Assessment and 2005 Water Supply Plan based on groundwater modeling prepared by District planning staffing using the ECF and Volusia County Regional Models. The fact the Area IV Wellfield is located in a priority water use caution area does not mean a consumptive use permit cannot be issued for this facility. In fact, over one- third of the District is located within a priority water resource caution area, and permits continue to be issued in those areas. Rather, the essence of the designation is the recognition of a concern, based on the regional models, that the proposed consumptive use of water might violate the wetland and lake constraints and that water resources other than fresh groundwater will be needed to supply the expected need for water in the area and in the District over the next 20 years. That does not mean that no additional groundwater withdrawals should be permitted in a designated area. Rather, it means that other resources should be developed and used along with whatever remaining additional fresh groundwater can be permitted. It is not an independent reason, apart from the permitting criteria, to deny the City's application. Impermissible Modification of Existing CUP Petitioners contend that the proposed CUP for Area IV includes an impermissible modification of the existing CUP for Areas II and III because “Other Condition” 5 limits average annual withdrawals from the Area II, III, and IV Wellfields, combined, to 5.79 mgd in 2009 and 6.01 mgd in 2010. (As indicated, the limitations would have to be reduced to no more than 5.2 mgd based on the more reasonable projected need.) However, the City’s current CUP for the Area II and III Wellfields expires in February 2008, which is before the Area IV Wellfield would become operational, so that "Other Condition" 5 will have no practical effect on the existing CUP for Areas II and III. In essence, "Other Condition" 5 serves to advise the City that it should not view the allocation for the Area IV Wellfield in addition to the City’s existing allocations for the Area II and Area III Wellfields and that any renewal of the existing CUP for Areas II and III will have to take the Area IV allocation into account. Appropriate Permit Fee Petitioners have alleged that the City has not paid the correct permit processing fee. In March 2001, the City paid the District $200 when it submitted its initial permit application to modify its existing CUP. In May 2005, the City paid the District an additional $800 when it amended its application and withdrew its request to modify its existing permit. All required permit processing fees have been paid for this CUP application 99052. Miscellaneous As to other issues raised by Petitioners in the case, the evidence did not suggest any danger of flooding, any proposed use of water reserved by rule for other uses, any effect on any established minimum flows or levels, or inadequate notice. Standing As found, Miami Corporation owns property immediately adjacent to the proposed Area IV Wellfield, and Ms. Clark owns property a little more than a mile away. Both alleged and attempted to prove that SAS drawdown from the proposed CUP would degrade wetlands on their property and interfere with their legal use of groundwater, and that saline intrusion from the proposed CUP would degrade the water quality of the UFAS resource which they use for potable water. As found, Petitioners did not prove those allegations; however, the evidence was that both Petitioners have substantial interests (the quality of water in the aquifer from which their wells withdraw water and wetlands on their property) that would be affected by the proposed CUP at least to some extent.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the District issue the City a CUP for Area IV as provided in the second revised TSR, except for a lower water allocation at this time, namely: 0.75 mgd on an annual average basis, with appropriately lower allocations on the other bases in the TSR, and with a combined annual average rate for Areas II, III, and IV in "Other Condition" 5 of 5.2 mgd for 2009 and 2010 instead of 5.79 mgd in 2009 and 2010, and appropriately lower combined maximum daily rates for Areas II, III, and IV in "Other Condition" 9. Jurisdiction is reserved to hear and rule on the pending motions for sanctions if renewed no later than 30 days after entry of the final order in this case. DONE AND ENTERED this 31st day of July, 2007, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 31st day of July, 2007.
The Issue The issue in this case is whether the portion of Consumptive Use Permit (CUP) Application Number 97106 seeking an allocation of 499,000 gallons per day (gpd) of groundwater for commercial/industrial uses (supply bulk water to bottling plants) meets the conditions for issuance as established in Section 373.223, Florida Statutes, Florida Administrative Code Rule 40C-2.301, and the Applicant’s Handbook, Consumptive Uses of Water.1 The County does not oppose or contest the portion of the CUP application authorizing use of 6.0 million gpd of surface water for limerock mining operations.
Findings Of Fact The Parties The County is a political subdivision of the State of Florida. The County operates a water supply utility that supplies water for a variety of uses, including providing untreated water, in bulk, for bottling purposes. The County is currently engaged in a long-range planning effort designed to assess water supply demands and sources to supply those demands in the County over the next 50 years. The County also has completed a study of the two major springs in the County (Rainbow Springs and Silver Springs), and the County’s Board of County Commissioners is in the process of enacting certain recommendations contained in the study. The well for the proposed CUP allocation is located on approximately 160 acres in northern Marion County. Hastings and Greene's father owned the property from 1978 until the latter's death. In 1993, the latter's interest was transferred to Greene and two brothers, who now hold title to the property along with Hastings. The District is a special taxing district created by Chapter 373, Florida Statutes, and is charged with the duty to prevent harm to water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The District has implemented Chapter 373, Florida Statutes, in part, through the adoption of Rule Chapters 40C-2 and 40C-20, and the Applicant’s Handbook, Consumptive Uses of Water. Historic Uses of Water on the Mine Site Since the 1980s, the property where the proposed withdrawals will occur has been used for mining of limerock and has been known as the “Black Sink Mine." A ten-inch diameter well has been located on the Black Sink Mine property for 35 years. The well was originally used to provide water to augment water levels in canals in and around the Black Sink Mine property. Later the well was used to irrigate watermelons grown on the property before the mining operation began. The limerock mining operation at Black Sink Mine uses approximately 6 million gpd of surface water. The mine pit at the site is divided by an earthen berm that separates a larger, previously mined area from a smaller area where active mining is occurring. Surface water is pumped from the actively mined portion of the pit to the larger, previously mined portion of the pit, to enable mining of the limerock material to be conducted at levels below the water table. Dewatering is necessary in order to remove the limerock. A majority of the property is mined to a depth of 55 feet below land surface. The limerock material extracted from the site is transported by trucks from the site, approximately 100 trucks per day, to various sites across North Florida. The Need for the Proposed Use of Groundwater If mining of limerock continues at the current pace, the limerock material at the Black Sink Mine will be exhausted within a year. Recognizing that the productive use of the property for limerock mining was nearing an end, Greene and Hastings began exploring other potential uses for the property, including use of the existing well on the property for production of bottled water. To explore the feasibility of producing water for bottling from the existing well, in 2004 Greene and Hastings engaged an engineering firm with expertise in water resources to conduct a hydrogeologic study of the mine property and well. The results of the study, showing water of sufficient quality and quantity for production of bottled water, motivated Greene and Hastings to submit the CUP application which was the subject of the hearing. The study also determined that water withdrawn from the well could be marketed as spring water. Greene and Hastings also determined through market research that the demand for bottled water has increased at the rate of ten percent per year for the last 4-5 years and that Florida bottlers were interested in purchasing water from the well on the mine site in bulk for bottling. In order to provide reasonable assurance that the water use proposed by Greene and Hastings is in such quantity as is necessary for economic and efficient utilization, Greene and Hastings must show that the amount to be used is consistent with what would typically be required for the activity being supplied; that the water will be used efficiently with loss or waste minimized; and that there is a demonstrated need for the water proposed for allocation. To demonstrate a need for the 499,000 gpd of groundwater requested in the application for an allocation of 499,000 gpd of groundwater, Greene and Hastings provided letters from two businesses engaged in bottling of water stating an intent to purchase specific quantities of water produced from the Greene and Hastings well should the CUP be granted. One of the letters of intent came from a bottler in Jacksonville, Florida, stating its intention to initially purchase 100,000 gpd of Greene and Hastings’s water. The other was from a bottler in Stuart, Florida, dated January 9, 2006, stating its intention to purchase 125,000 gpd of water from Greene and Hastings within “the next 12-24 months.” Based on these letters Greene and Hastings initially requested an allocation of 200,000 gpd of groundwater for the first year of the permit. Prior to completion of the CUP application, Greene and Hastings learned that because the Stuart bottler’s facility was located outside the geographic boundaries of the District, to transport water from the Black Sink Mine to the Stuart facility would require additional data and information related to inter- district transfers of groundwater. Greene and Hastings elected to reduce the requested allocation for the first year of the permit to 100,000 gpd, relying on the letter from the Jacksonville bottler. Based on the current market demand for bottled water, and based on the fact that there are other bottlers of water within the boundaries of the District purchasing water for bottling, it is reasonable to conclude that Greene and Hastings can sell 499,000 gpd of water from the well on the Black Sink Mine property by the end of the fifth year of the proposed CUP. These facts support the conclusion that there is a need for the amount of water requested by Greene and Hastings. In addition, the permit is conditioned to require a compliance review at five-year intervals during the term of the permit. Should Greene and Hastings not be successful in selling the full 499,000 gpd allocated by the fifth year of the permit, the District has the ability as part of the five-year compliance review to modify the permit to reduce the allocation based on the amount of water actually used for bottled water. Efficiency of the Proposed Use of Water The production of water in bulk for shipment to a bottler is a highly efficient use of water. There is very little if any water lost in the withdrawal and loading of the water; almost all the water goes to the end product. The evidence establishes that the use proposed by Greene and Hastings is an efficient use of water. Potential Impacts from the Proposed Groundwater Allocation The source of the groundwater proposed for use by Greene and Hastings is the Floridan aquifer. Because there is no confining layer in the vicinity of the Black Sink Mine that would retard movement of water between the Upper Floridan aquifer and the surficial aquifer, both the Upper Floridan aquifer and the surficial aquifer essentially behave as one unit. Thus, any drawdown in the surficial aquifer associated with groundwater withdrawals at this location will be the same as the related drawdown in the Upper Floridan aquifer as a result of groundwater withdrawals. The Floridan aquifer is capable of producing the amount of groundwater requested by Greene and Hastings in the application. To assess the level of drawdown expected to occur in both the Floridan aquifer and the surficial aquifer as a consequence of the proposed groundwater withdrawals, Greene and Hastings engaged a consultant, Andreyev Engineering, Inc., to run a groundwater model to simulate the proposed withdrawal and predict the anticipated drawdown. The groundwater model selected for use for this application was the North Central Florida Regional Groundwater Flow Model, a model developed for the District by the University of Florida for use in Marion County and surrounding areas. This model is an accepted and reliable tool for predicting aquifer drawdown associated with groundwater withdrawals at the location of the withdrawals proposed in this application and is used extensively by the District in its CUP program. To simulate the drawdown associated with the withdrawal of 499,000 gpd from the Florida aquifer, Greene and Hastings’s consultant inserted a pumping well in the model grid where the Black Sink Mine is located. The model then simulated pumping from the well at 499,000 gpd. The model results are graphically depicted on maps showing drawdown contours overlain on the Black Sink Mine Site, illustrating the level of drawdown in the aquifer and the distance the level of drawdown extends out from the well site. The model predicts a drawdown of 0.03 feet in the Floridan and surficial aquifers in the immediate vicinity of the well on the Black Sink Mine property, and a drawdown of 0.02 feet in the Floridan and surficial aquifers extending out to a distance of approximately 5,000 feet from the well, less than 1/3 of an inch of drawdown. The model results represent a reasonable estimation of the drawdown that will occur as a consequence of withdrawal of 499,000 gpd of groundwater at the Black Sink Mine as proposed in the application. The impact of the 0.02-0.03 foot drawdown predicted by the model was variously characterized by the experts who testified at the final hearing as “not practically measurable,” an “insignificant impact,” “very small,” or “de minimus.” The use of water proposed by Greene and Hastings will not cause significant saline water intrusion, nor will it further aggravate any existing saline water intrusion problems. The use of water proposed by Greene and Hastings will not induce significant saline water intrusion to such an extent as to be inconsistent with the public interest. Because the predicted drawdown is so small, it will not interfere with any existing legal uses of water. Neither will the predicted drawdown cause serious harm to the quality of the source of the water proposed for use by Greene and Hastings. With regard to the issue of interference with existing legal users, the County argued that the District should have considered whether there is sufficient groundwater available to meet all projected needs for water in the County during the 20- year term of the permit, as well as the additional cost County citizens will need to bear to secure alternative water supplies as a result of any future shortfalls in available groundwater. The County projects, based on planning estimates, that use of groundwater to supply all anticipated uses of water in the County will be limited within 20-30 years from the present. Such “limits” would not become an issue until after the Greene and Hastings permit expires. Thereafter, water users in the County will have to rely on alternative water sources, conservation, reuse of reclaimed water, and surface water. The anticipated growth in demand in the County’s planning estimates includes anticipated growth in the commercial/industrial category of uses. The County’s estimated limits on groundwater use will occur whether or not the CUP requested by Greene and Hastings is approved. The District does not base its permitting decisions on a pending CUP application on the possibility that the source of water may become limited at some future time for water uses not presently permitted, provided the application meets all permitting criteria. The District allocates water for recognized beneficial uses of water, such as commercial/industrial uses, as long as the water is available and the application meets District criteria. The District allocates water as long as an allocation does not cause harm to the resource. Based on these facts, the proposed use of water by Greene and Hastings will not interfere with any existing legal use of water. No Evidence of Economic or Environmental Harm Because the predicted drawdown associated with the proposed use of water is so small, and because no impacts are anticipated on any surrounding properties or water uses, Greene and Hastings have provided reasonable assurance that any economic harm caused by the proposed use has been reduced to an acceptable amount. For purposes of determining whether an applicant has provided reasonable assurance that any environmental harm caused by a proposed use of water is reduced to an acceptable amount, the District examines modeling results showing the level of drawdown predicted for the use and also examines the resources in and around the site of a withdrawal to determine the likely impact of the drawdown predicted for the withdrawal on those resources. The District’s environmental scientists examined the Black Sink Mine site and the surrounding landscape and determined that, based on the characteristics of the landscape in and around the site of the proposed withdrawal and based on the negligible drawdown impact predicted for the proposed water use in both the Floridan and surficial aquifers, there will be no environmental harm resulting from the allocation of groundwater contained in the CUP. The use of water proposed by Greene and Hastings will not cause damage to crops, wetlands, or other types of vegetation. The use of water proposed by Greene and Hastings will not cause the water table to be lowered so that stages or vegetation will be adversely and significantly affected on lands other than those owned, leased, or otherwise controlled by Greene and Hastings. The CUP will not use water that the District has reserved pursuant to Section 373.223(3), Florida Statutes, and Rule 40C-2.301(4). No Impact on Established Minimum Flows or Levels No minimum surface or groundwater levels or surface water flows have been established by the District pursuant to Rule Chapter 40C-8 for any of the water bodies in Marion County that may be affected by the proposed water use. The closest water body for which the District has established a minimum flow is the St. Johns River at the State Road 44 bridge located more than 50 miles from the Black Sink Mine property. The closest water body for which the District has established a minimum level is Star Lake in Northwest Putnam County, more than nine miles from the mine site. Because of the distance of these water bodies from the withdrawal site and because of the negligible drawdown expected to be caused by the proposed use of water, the use will not cause an established minimum flow or level to be exceeded during the term of the permit. Other Reasonable-Beneficial Use Considerations All available conservation measures that are economically, environmentally, and technically feasible are proposed for implementation in the application by Greene and Hastings for the uses proposed by them. Greene and Hastings submitted to the District, as part of the application, a conservation plan that complies with the requirements of A.H. Section 10.3(e). Reclaimed water, as defined in the District’s rules, is not currently available to be used in place of the water proposed for use by Greene and Hastings in the application. The use of water proposed by Greene and Hastings in the application will not cause or contribute to a violation of water quality standards in receiving waters of the state. The use of water proposed by Greene and Hastings in the application will not cause or contribute to flood damage. The Use is Consistent With the Public Interest With regard to the determination of whether reasonable assurance was provided that the proposed use is consistent with the public interest, the County contends that: 1) Greene and Hastings must show that any necessary approvals required by the County’s Comprehensive Plan and/or its LDRs for use of the site for producing bottled water have been obtained; 2) that the District did not properly consider the effect of existence of lawn watering restrictions affecting citizens in the County in evaluating the application; and 3) that the District should have considered the amount of money the applicant may stand to gain from the use of the water requested in the application. In examining whether an application is consistent with the public interest, the District considers whether a particular use of water is going to be beneficial or detrimental to the people of the area and to water resources within the state. In this inquiry, the District considers whether the use of water is efficient, whether there is a need for the water requested, and whether the use is for a legitimate purpose; and the inquiry focuses on the impact of the use on water resources and existing legal users. Sale of water for bottling for human consumption is recognized by the District as a legitimate, beneficial economic enterprise. Use of water for human consumption is among the highest and best uses permitted by the District. For reasons outlined above in the Recommended Order, there are no detrimental impacts that will result from this use of water. The District does not consider whether local government approvals have been obtained prior to issuance of a CUP for purposes of determining whether the application is consistent with the public interest. Neither does the District consider impacts related to local roads from trucks transporting the water or other impacts not related to water resources. No such requirements are included in the District’s adopted permitting criteria. There are no water shortage orders in effect in the District at present. In evaluating a CUP application, the District considers whether its permitting criteria will be met during periods of normal weather as well as during periods of drought. Withdrawals authorized in CUPs can be restricted by order of the District during periods of water shortage, such as droughts. Thus, the possibility of a water shortage order being entered in the County in the future, or the fact that such orders may have been in effect there in the past, does not mean the application is not consistent with the public interest. The District critically examines the efficiency of all water uses for purposes of enacting its regulatory requirements regarding CUPs and in evaluating CUP applications. The District has adopted restrictions on landscape irrigation (which apply to all such users throughout the District’s jurisdiction, not just in Marion County) limiting landscape irrigation to no more than two days per week. The limitations on landscape irrigation exist because this type of use has been determined to be a highly inefficient, wasteful use of water without such restrictions. By contrast, the use of water proposed by Greene and Hastings is a highly efficient use of water, resulting in little or no loss or waste of water. The District does not consider the level of financial gain or benefit an applicant will derive from a permitted use of water for purposes of determining whether the proposed use is consistent with the public interest. Most, if not all permitted users of water derive some level of economic benefit from the water they use, and the District’s rule criteria do not provide standards for evaluating such gain or that otherwise limit the amount of such gain. For the foregoing reasons, the Applicant has provided reasonable assurance that the use of water proposed in the application is consistent with the public interest. Groundwater is the Lowest Quality Source for this Use The County contends that groundwater is not the lowest quality source of water available for the use proposed by Greene and Hastings, in that surface water from the mine pit on the site could be treated and used for bottling in place of groundwater. From the testimony, it is clear that Greene and Hastings’s ability to market water for bottling from the Black Sink Mine is dependent on such water being capable of being labeled as spring water, and on such water being delivered without having gone through any treatment processes. The testimony also establishes that because of the connection between the surficial aquifer and the Upper Floridan aquifer at the site, using surface water instead of groundwater to supply the proposed use would result in little if any reduction in impacts to the Floridan aquifer. More importantly, because the application proposes use of water for direct human consumption, the District’s rules do not require use of a lower quality source of water. For the foregoing reasons, groundwater is the lowest quality source of water suitable for use for bottled water for human consumption. The District’s Noticing Was Adequate and Appropriate The District provided notice of its receipt of the Greene and Hastings CUP application by publishing notice in the Ocala Star-Banner, a newspaper of general circulation in Marion County, on January 25, 2005, with an amended notice being published on February 16, 2005, and also by letters to the County dated January 20, 2005, and February 10, 2005. In each notice, the location of the proposed use was identified by section, township, and range. The County responded to the notices by sending a letter of objection to the application dated February 14, 2005. Thus, the County received sufficient information regarding the location of the proposed use to enable it to prepare and file a letter of objection to the application, and suffered no prejudice as a consequence of the notice. The District provided personal notice of its intent to issue a CUP to Greene and Hastings by letter dated April 5, 2006. In this notice, the location of the proposed use was identified by section, township, and range. The County responded by filing petitions that have resulted in this proceeding. Thus, the County received sufficient notice of the location of the use addressed in the District’s intent to issue to enable it to initiate administrative proceedings regarding the permit, and suffered no prejudice as a consequence of the notice.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the District enter an order granting CUP No. 97106 to Greene and Hastings with the conditions recommended in the District’s Technical Staff Report. DONE AND ENTERED this 9th day of January, 2007, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 9th of January, 2007.
Findings Of Fact This hearing was occasioned by the Respondent's denial of (an) environmental permit(s) requested by the Petitioner, Baker Cut Point Company, a corporation owned by James C. Dougherty. The Respondent has asserted permit jurisdiction pursuant to Chapters 253 and 403, Florida Statutes, and attending regulatory provisions of Chapter 17, Florida Administrative Code. The Petitioner requested a formal hearing to consider the matters in dispute, and that hearing was conducted on the dates indicated before and in keeping with Subsection 120.57(1), Florida Statutes. The Petitioner owns land in Monroe County, Florida, identified as Buccaneer Point. This parcel of land is a peninsula which extends from the west side of Key Largo, Florida, and has as its essential features two interior lakes and well-defined mangrove stands to include red mangroves (Rhizophora mangle) and black mangroves (Avicennia germinans). This parcel of land is bordered on the north by Buttonwood Sound and on the south by Florida Bay, navigable water bodies. Respondent's Exhibit No. 1, admitted into evidence, depicts the present condition of the parcel of land, with the exception of proposals involved in the permit review process, which are the subject of this Recommended Order and the companion case of James C. Dougherty v. State of Florida, Department of Environmental Regulation, DOAH Case No. 80-1055. At present, the two lakes do not offer normal access to Buttonwood Sound and Florida Bay, nor do they offer an interior water connection between the two lakes. The southernmost lake does have intermittent water exchange with Florida Bay. Those lakes are identified as North Lake and South Lake. The Petitioner had initially applied for permission to place 75,000 cubic yards of clean limerock fill at the project site and indicated that the fill would be placed landward of the mean high water line. That fill would have covered approximately 17.56 acres in the residential subdivision. The application was made on October 27, 1978. See Petitioner's Exhibit No. 20, admitted into evidence. The Respondent issued an Intent to Deny the permit connected with that request, and that Intent to Deny was issued on April 3, 1980, asserting permit jurisdiction by the Respondent under the provisions of Chapters 253 and 403, Florida Statutes. See Petitioner's Exhibit No. 5, admitted into evidence. The Petitioner modified the permit application effective April 24, 1981. Under the terms of the revised permit application, the Petitioner would place limerock fill over 5.7 acres, including mangroves, constituting approximately 30,000 cubic yards of fill. Additionally, the applicant modified the permit request to include filling the exterior rim of the interior lakes to create a littoral zone and the placement of a berm at that exterior. See Petitioner's Exhibit No. 6, admitted into evidence. The project, as contemplated, allows for a preserve area of mangroves along the northern end of the peninsula and also employs a "pad" concept to preserve the mangrove acreage where fill is to be placed. Those "pads" for houses would be bordered by six- inch dikes to divert upland runoff which might find its way into the interior lakes on the property. The fill material to be placed in those areas, other than the lakes, would be placed above or landward of the line of mean high water, as determined by the mean high water line survey found in Petitioner's Exhibit No. 1, admitted into evidence, dating from December, 1975, and whose methodology was approved on January 15, 1980, for purposes of Chapter 177, Florida Statutes, through the offices of the State of Florida, Department of Natural Resources. This factual determination is also borne out by a review of the Petitioner's Exhibit No. 6, in pari materia with Respondent's Exhibit No. 1 and Petitioner's Exhibit No. 1. As the lakes are now constituted, the placement of the limerock fill at the fringe of the lakes would not be waterward of the line of mean high water; however, when the placement of this fill material is considered in view of the permit request made in Division of Administrative Hearings' Case No. 80-1055, which permit request attempts to open up the lakes by direct water connection to the aforementioned navigable water bodies, then the placement of the fill would be below the line of mean high water. See Petitioner's Exhibit No. 6. Therefore, treatment of the placement of fill for purposes of this case will be considered on a basis that the lakes remain landlocked and the matter of the placement of this fill will be a matter assumed in the Division of Administrative Hearings' Case No. 80-1055, dealing with an attempt to open those lakes by direct water connection to navigable waters of the State. Although the mangrove areas to be filled by the project are landward of the mean high water line, those mangroves are inundated by water at times and considered to be "submerged lands" adjacent to the State water bodies, Buttonwood Sound and Florida Bay. If the mangroves are removed, part of the ecosystem's ability to filter sediments and nutrients contained in stormwater runoff of adjacent upland areas and from tidal flows will be destroyed and will affect water quality considerations for adjacent open bay estuarine or marine systems. The extensive root system of the mangroves and associated vegetation assist in stabilization of estuarine shoreline sediments and attenuation of storm generated tides. Even though some of the mangroves in the proposed area for fill are in a stressed condition, i.e., a condition in which their growth is stunted, if left alone, those mangroves would flourish and provide the same water quality functions as healthy mangroves. A biologist presented by the Petitioner identified the number of mangrove species, the number of mangroves, the diameter of those mangroves and the height of canopies of the mangroves in areas of the project site. These items were summarized through the use of the Holdridge Complexity Index, which measures structural complexity of mangroves within the sites. See Petitioner's Exhibit No. 17, admitted into evidence. In particular, four such station pairs were studied and the pairs were constituted of a station within the basin of the mangrove stand and a station at the fringe of the mangroves. There was a site at each proposed waterway and a site at the northeastern and western points of the peninsula, the area of the proposed mangrove preserve. See Petitioner's Exhibit No. 6, admitted into evidence. This study indicated that fringe mangroves are more developed than the ones in the heart of the basins. This study also revealed that the upland fill would remove primarily black mangroves. The removal of the mangroves and placement of fill would be in furtherance of the creation of twelve to fourteen residential lots, the majority of which would be located on Florida Bay. See Petitioner's Exhibit No. 6. In furtherance of the intention to offer these lots for sale, the Petitioner has sold one of the lots on Florida Bay for $95,000 on or about June 2, 1981. If the proposed utilization of the property in question was not allowed, the Petitioner stands to lose money in his investment in the face of preliminary developmental expenses which, at present, exceed monetary returns from the sale of lots. The area in which the upland fill would be placed is porous limerock, which allows water to seep through and be transported underground to adjoining water bodies, both on site and off site, in addition to the runoff from the upland areas. To address these concerns, the Petitioner has planned for the installation of dikes in the various upland areas which are to be built to prohibit drainage into the remaining mangrove areas and ambient waters. The littoral zones around the edge of the inland lakes would promote marine and wetland vegetation which assists in the function of filtration of sediments and nutrients. On the subject of water quality considerations, the use of the clean limerock fill, which is calcium carbonate, would tend to stabilize seawater at its natural PH level, thereby allowing the specific conductance (measurement of salinity) of the lakes and surrounding ambient waters to remain in a natural state in terms of direct effects of the fill material. On the subject of contamination of water by copper, normally, seawater contains 3 micrograms per liter of copper. In a project such as this one, it is not expected that higher amounts of copper would be found, and the limerock contains only trace amounts of copper, if any. Specific testing done at the project site reveals less than 1 microgram per liter of copper in the North Lake and 4 micrograms per liter in the South Lake. Therefore, the activity is not expected to increase the levels of copper to the extent that measurements exceed 500 micrograms per liter in either the lakes or surrounding waters. In dealing with the substance of zinc, seawater contains as much as 30 micrograms per liter of zinc. Sampling by the Petitioner indicated 2 micrograms per liter in the North Lake and 8 micrograms per liter in the South Lake of that substance. The activity and the development is not expected to increase the levels of zinc to the extent that measurements exceed 1,000 micrograms per liter in either the lakes or surrounding waters. In sampling for lead content, the samples revealed less than 50 micrograms per liter of lead and the placement of limerock fill will not cause the amounts of lead in the lakes and surrounding waters to exceed 50 micrograms per liter. Testing for phenolic compounds at the site revealed that these materials were below established standards of the Respondent, and it is not expected that those standards will be exceeded through activities proposed in this permit process. The testing for oils and greases indicated less than 1 milligram per liter of oils and greases, which is below the State's standard of 15 milligrams per liter, and the activities proposed at the project site are not anticipated to exceed 15 milligrams per liter of oils and greases. Normal PH for coastal waters is 6 to 8.5, and the PH levels of the lakes and ambient waters in the area were in the range of 8, except for measurements done in the winter at the North Lake, where they were shown to be 7.5. The placement of limerock fill will not cause an imbalance in the pH readings. The activity as proposed will not add substances which are created by industrial or agricultural means or cause other discharges, colors or odors, or otherwise promote a nuisance condition in the ambient waters or the lakes. Measurement was made to toxic materials in the way of synthetics, organics or heavy metals. Those tests in the lakes and ambient waters showed heavy metals to be at low levels. There were no sources revealed of synthetics or organics. (The calcium carbonate found in the limerock fill would assist in breaking down lawn pesticides into phosphate.) In summary, the filling, as proposed, is not expected to promote the introduction of toxic substances into the lakes or surrounding waters. The placement of the clean limerock fill in the upland area is not expected to cause problems with turbidity in the lakes or ambient waters, which turbidity would exceed 50 Jackson Units above background. The filling will not affect dissolved, oxygen levels of the surrounding waters. Biochemical oxygen demand, the measurement of demand for oxygen of organic and chemical materials in the water, will not be influenced by the placement of the clean limerock fill related to surrounding waters. The limerock fill is not expected to introduce other oxygen demanding materials into the subject waters, such that dissolved oxygen levels would be lowered by BOD loading. There will be no problem with dissolved solids, in this instance, salts, due to the fact that calcium carbonate fill would not affect the dissolved solids in the ambient waters or in the lakes. Coastal water PH normally measures 6 to 8.5 and PH for open waters in the range of 1. Placement of calcium carbonate fill on the uplands would not cause the PH in the Class II waters in Everglades National Park, which is 300 feet east of Baker Cut Point, to vary above or below normal levels for either coastal or open waters. In addition, there would be no discharge of toxic substances from the calcium carbonate fill into the Class II waters herein described. Tests conducted in the vicinity of homesites utilizing septic tanks, and specifically as sampled in waters adjacent to Buccaneer Point and the subject lakes in a development known as Private Park and Buttonwood Sound , indicated less than one fecal coliform bacterium per 100 milliliters. See Petitioner's Exhibit No. 14, admitted into evidence. Anticipated setbacks for additional septic tanks to be associated with the buildup at the project site would be in keeping with the requirements of Monroe County, Florida, and harmful septic tank leachate is not expected to be a problem.
The Issue The issues to be resolved in this proceedings concern whether Environmental Resource Permit (ERP) No. 4-109-0216-ERP, should be modified to allow construction and operation of a surface water management system (project) related to the construction and operation of single-family homes on "Marshall Creek" (Parcel D) in a manner consistent with the standards for issuance of an ERP in accordance with Rules 40C-4.301 and 40C-4.302, Florida Administrative Code.
Findings Of Fact The Project The project is a 29.9-acre residential development and associated stormwater system in a wetland mitigation area known as "Parcel D." It lies within the much larger Marshall Creek DRI in St. Johns County, Florida, bounded on the northeast by Marshall Creek, on the south and southeast by a previously permitted golf course holes sixteen and seventeen, and on the north by the "Loop Road." The project consists of thirty residential lots of approximately one-half acre in size; a short segment of Loop Road to access Parcel D; an internal road system; expansion of previously permitted Pond N, a wet detention stormwater management pond lying north of the Loop Road and wetland mitigation areas. Approximately 1.15 acres of wetlands are located on the Parcel D site. The project plan calls for filling 0.63 acres of the wetlands for purposes of constructing a road and residential lots for Parcel D. Part of that 0.63-acre impact area, 0.11 acres, is comprised of a 760-foot-long, narrow drainageway, with 0.52 acres of adjacent wetland. Downstream of the fill area, 0.52 acres of higher quality wetland is to be preserved. Hines proposes to preserve 4.5 acres of existing wetland and 2.49 acres of upland, as well as to create .82 acres of forested wetland as mitigation for the proposed impact of the project. Additionally, as part of the project, Hines will implement a nutrient and pesticide management plan. The only pesticides to be used at the project will be approved by the Department of Agriculture for use with soil types prevailing at the site and only pesticides approved by the Environmental Protection Agency may be used on the site. All pesticides to be used on the project site must be selected to minimize impacts to ground and surface water, including having a maximum 70-day half-life. Stormwater Management System The majority of surface runoff from Parcel D will be diverted to a stormwater collection system and thence through drainage pipes and a swale into Phase I of Pond N. After treatment in Pond N, the water will discharge to an upland area adjacent to wetlands associated with Marshall Creek and then flow into Marshall Creek. The system will discharge to Marshall Creek. In addition to the area served by Pond N, a portion of lots fourteen though twenty drain through a vegetated, natural buffer zone and ultimately through the soil into Marshall Creek. Water quality treatment for that stormwater runoff will be achieved by percolating water into the ground and allowing natural soil treatment. The fifty-foot, vegetated, natural buffer is adequate to treat the stormwater runoff to water quality standards for Lots 14, 15 and 20. Lots 16, 17, 18 and 19, will have only a twenty-five foot buffer, so additional measures must be adopted for those lots to require either that the owners of them direct all runoff from the roofs and driveways of houses to be constructed on those lots to the collection system for Pond N or placement of an additional twenty-five foot barrier of xeriscape plants, with all non- vegetated areas being mulched, with no pesticide or fertilizer use. An additional mandatory permit condition, specifying that either of these measures must be employed for Lots 16, 17, 18 and 19, is necessary to ensure that water quality standards will be met. Pond N is a wet detention-type stormwater pond. Wet detention systems function similarly to natural lakes and are permanently wet, with a depth of six to twelve feet. When stormwater enters a wet detention pond it mixes with existing water and physical, chemical and biological processes work to remove the pollutants from the stormwater. Pond N is designed for a twenty-five year, twenty-four- hour storm event (design storm). The pre-development peak rate of discharge from the Pond N drainage area for the design storm event is forty cubic feet per second. The post-development peak rate of discharge for the design storm event will be approximately twenty-eight cubic feet per second. The discharge rate for the less severe, "mean annual storm" would be approximately eleven cubic feet per second, pre-development peak rate and the post-development peak rate of discharge would be approximately five cubic feet per second. Consequently, the post-development peak rate of discharge does not exceed the pre- development peak rate of discharge. Pond N is designed to meet the engineering requirements of Rule 40C-42.026(4), Florida Administrative Code. Because the pond is not designed with a littoral zone, the permanent pool volume has been increased by fifty-percent. Additionally, because Pond N discharges to the Class II waters of Marshall Creek, an additional fifty-percent of treatment volume is included in the pond design. The system design addresses surface water velocity and erosion issues through incorporation of best management practices promulgated by the District to prevent erosion and sedimentation, including; designing side slopes of 4:1; siding and seeding disturbed areas to stabilize soil; and the use of riprap at the outfall from Pond N. During construction, short- term water quality impacts will be addressed through installation of silt fences and hay bales. The majority of the eighteen-acre drainage basin which flows into the Parcel D wetland lies to the south and southwest of Parcel D. In accordance with the prior permit, water from those off-site acres will be intercepted and routed to stormwater ponds serving golf course holes sixteen and seventeen. The system design will prevent adverse impacts to the hydroperiod of remaining on-site and off-site wetlands. The remaining wetlands will be hydrated through groundwater flow. Surface waters will continue to flow to the wetlands adjacent to lots fourteen through twenty because drainage from those lots will be directed across a vegetated, natural buffer to those wetlands. There is no diversion of water from the natural drainage basin, because Pond N discharges to a wetland adjacent to Marshall Creek, slightly upstream from the current discharge point for the wetland which is to be impacted. This ensures that Marshall Creek will continue to receive that fresh-water source. An underground "PVC cut-off wall" will be installed around Pond N to ensure that the pond will not draw down the water table below the wetlands near the pond. Pond N has been designed to treat stormwater prior to discharge, in part to remove turbidity and sedimentation. This means that discharge from the pond will not carry sediment and that the system will not result in shoaling. There will be no septic tanks in the project. The system is a gravity flow system with no mechanical or moving parts. It will be constructed in accordance with standard industry materials readily available and there will be nothing extraordinary about its design or operation. The system is capable of being effectively operated and maintained and the owner of the system will be the Marshall Creek Community Development District (CDD). Water Quality Water entering Pond N will have a residence time of approximately 200 days or about fifteen times higher than the design criteria listed in the below-cited rule. During that time, the treatment and removal process described herein will occur, removing most of the pollutants. Discharge from the pond will enter Marshall Creek, a Class II water body. The discharges must therefore meet Class II water quality numerical and anti-degradation standards. The design for the pond complies with the design criteria for wet detention systems listed in Rule 40C-42.026(4), Florida Administrative Code. In addition to meeting applicable design criteria, the potential discharge will meet water quality standards. The pond will have low levels of nitrogen and phosphorous resulting in low algae production in the pond. The long residence time of the water in the pond will provide an adequate amount of time for pesticides to volatilize or degrade, minimizing the potential for pesticide discharge. Due to the clear characteristics of the water column, neither thermal stratification nor chemical stratification are expected. Periodically, fecal coliform and total coliform levels are exceeded under current, pre-development conditions. These are common natural background conditions. Because the detention time in the pond will be an average of 200 days, and because the life span of fecal coliform bacteria is approximately seven to fourteen days the levels for coliforms in the pond will be very low. Discharges from the pond will enhance water quality of the Class II receiving waters because the levels of fecal coliform and total coliform will be reduced. The discharge will be characterized by approximately 100 micrograms per liter total nitrogen, compared with a background of 250 micrograms per liter presently existing in the receiving waters of Marshall Creek. The discharge will contain approximately three micrograms per liter of phosphorous, compared with sixty-three micrograms per liter presently existing in Marshall Creek. Total suspended solids in the discharge will be less than one-milligram per liter compared with seventy-two milligrams per liter in the present waters of Marshall Creek. Biochemical oxygen demand will be approximately a 0.3 level in the discharge, compared with a level of 2.4 in Marshall Creek. Consequently, the water quality discharging from the pond will be of better quality than the water in Marshall Creek or the water discharging from the wetland today. The pollutant loading in the discharge from the stormwater management system will have water quality values several times lower than pre-development discharges from the same site. Comparison of pre-development and post-development mass loadings of pollutants demonstrates that post-development discharges will be substantially lower than pre-development discharges. Currently, Marshall Creek periodically does not meet Class II water quality standards for dissolved oxygen. Construction and operation of the project will improve water quality in the creek concerning dissolved oxygen values because discharges from Pond N will be subjected to additional aeration. This results from design features such as discharge from the surface of the system, where the highest level of dissolved oxygen exists, and the discharge water draining through an orifice and then free falling to a stormwater structure, providing additional aeration. Discharges from the system will maintain existing uses of the Class II waters of Marshall Creek because there will be no degradation of water quality. Discharges will not cause new violations or contribute to existing violations because the discharge from the system will contain less pollutant loading for coliform and will be at a higher quality or value for dissolved oxygen. Discharges from the system as to water quality will not adversely affect marine fisheries or marine productivity because the water will be clear so there will be no potential for thermal stratification; the post-development discharges will remain freshwater so there will be no change to the salinity regime; and the gradual pre-development discharges will be replicated in post-development discharges. Several factors minimize potential for discharge of pesticide related pollutants: (1) only EPA-approved pesticides can be used; (2) only pesticides approved for site-specific soils can be used; (3) pesticides must be selected so as to minimize impacts on surface and groundwater; (4) pesticides must have a maximum half-life of 70 days; and (5) the system design will maximize such pollutant removal. Archaeological Resources The applicant conducted an archaeological resource assessment of the project and area. This was intended to locate and define the boundaries of any historical or archaeological sites and to assess any site, if such exists, as to its potential eligibility for listing in the National Register of Historic Places (National Register). Only a portion of one archaeological site was located on the project tract. Site 8SJ3473, according to witness Anne Stokes, an expert in the field of archaeological assessment, contains trace artifacts dating to the so-called "Orange Period," a time horizon for human archaeological pre-history in Florida dating to approximately 2,300 B.C. The site may have been only a small campsite, however, since only five pottery fragments and two chert flakes, residuals from tool-making were found. Moreover, there is little possibility that the site would add to knowledge concerning the Orange Period or pre-history because it is a very common type of site for northeast Florida and is not an extensive village site. There are likely other campsites around and very few artifacts were found. No artifacts were found which would associate the site with historic events or persons. The applicant provided the findings of its cultural resource assessment, made by Dr. Stokes, to the Florida Division of Historical Resources. That agency is charged with the responsibility of reviewing cultural resource assessments to determine if significant historic or archaeological resources will be impacted. The division reviewed the survey techniques used by Dr. Stokes, including shovel testing, sub-surface testing and pedestrian walk-over and investigation. The division determined that the site in question is not of a significant historical or archaeological nature as a resource because it does not meet any of the four criteria for inclusion in the National Register.1 Thus the referenced agency determined that the site in question is not a significant historical or archaeological resource and that construction may proceed in that area without further investigation, insofar as its regulatory jurisdiction is concerned. Wetlands The wetlands to be impacted by the project consist of a 1,000 foot drainage-way made up of a 0.11 acre open-water channel, approximately four feet wide, and an adjacent vegetated wetland area of approximately 0.52 acres containing fewer than 30 trees. The open-water channel is intermittent in that it flows during periods of heavy rainfall and recedes to a series of small, standing pools of water during drier periods. The Parcel D wetland is hydrologically connected to Marshall Creek, although its ephemeral nature means that the connection does not always flow. The wetland at times consists only of isolated pools that do not connect it to Marshall Creek. Although it provides detrital material export, that function is negligible because the productivity of the adjacent marsh is so much greater than that of the wetland with its very small drainage area. Because of the intermittent flow in the wetland, base flow maintenance and nursery habitat functions are not attributed to the wetland. The Parcel D wetland is not unique. The predominant tree species and the small amount of vegetated wetland are water oak and swamp bay. Faunal utilization of the wetland is negligible. The wetland drainage-way functions like a ditch because it lacks the typical characteristics of a creek, such as a swampy, hardwood floodplain headwater system that channelizes and contains adjacent hardwood floodplains. The location of the wetland is an area designated by the St. Johns County comprehensive plan as a development parcel. The Florida Natural Areas Inventories maps indicate that the wetland is not within any unique wildlife or vegetative habitats. The wetland is to be impacted as a freshwater system and is not located in a lagoon or estuary. It contains no vegetation that is consistent with a saltwater wetland. The retaining wall at the end of the impact area is located 1.7 feet above the mean high water line. Wetland Impacts The proposed 0.63 acre wetland impact area will run approximately 760 linear feet from the existing trail road to the proposed retaining wall. If the wetland were preserved, development would surround the wetland, adversely affecting its long-term functions. Mitigation of the wetland functions is proposed, which will provide greater long-term ecological value than the wetland to be adversely affected. The wetland to be impacted does not provide a unique or special wetland function or good habitat source for fish or wildlife. The wetland does not provide the thick cover that would make it valuable as Black Bear habitat and is so narrow and ephemeral that it would not provide good habitat for aquatic-dependent and wetland-dependent species. Its does not, for instance, provide good habitat for woodstorks due to the lack of a fish population and its closed- in tree canopy. Minnow sized fish (Gambusia) and crabs were seen in portions of the wetland, but those areas are downstream of the proposed area of impact. Mitigation Mitigation is offered as compensation for any wetland impacts as part of an overall mitigation plan for the Marshall Creek DRI. The overall mitigation plan is described in the development order, the mitigation offered for the subject permit and mitigation required by prior permits. A total of 27 acres of the more than 287 acres of wetlands in the total 1,300-acre DRI tract are anticipated to be impacted by the DRI. Approximately 14.5 acres of impacted area out of that 27 acres has already been previously authorized by prior permits. The overall mitigation plan for the DRI as a whole will preserve all of the remaining wetlands in the DRI after development occurs. Approximately one-half of that preserved area already has been committed to preservation as a condition of prior permits not at issue in this case. Also, as part of prior permitting, wetland creation areas have been required, as well as preserved upland buffers which further protect the preserved wetlands. The mitigation area for the project lies within the Tolomato River Basin. The development order governing the total DRI requires that 66 acres of uplands must also be preserved adjacent to preserved wetlands. The overall mitigation plan for the DRI preserves or enhances approximately 260 acres of wetlands; preserves a minimum of 66 acres of uplands and creates enhancement or restores additional wetlands to offset wetland impacts. The preserved wetlands and uplands constitute the majority of Marshall Creek, and Stokes Creek which are tributaries of the Tolomato River Basin, a designated Outstanding Florida Water (OFW). Preservation of these areas prevents them from being timbered and ensures that they will not be developed in the future. The overall DRI mitigation plan provides regional ecological value because it encompasses wetlands and uplands they are adjacent to and in close proximity to the following regionally significant resources: (1) the 55,000 acre Guana- Tolomato-Matanzas National Estuarine Research Reserve; (2) the Guana River State Park; (3) the Guana Wildlife Management Area; (4) an aquatic preserve; (5) an OFW; and (6) the 22,000 acre Cummer Tract Preserve. The mitigation plan will provide for a wildlife corridor between these resources, preserve their habitat and insure protection of the water quality for these regionally significant resources. The mitigation offered to offset wetland impacts associated with Parcel D includes: (1) wetland preservation of 0.52 acres of bottom land forest along the northeast property boundary (wetland EP); (2) wetland preservation of 3.98 acres of bottom land forest on a tributary of Marshall Creek contained in the DRI boundaries (Wetlands EEE and HHH); (3) upland preservation of 2.49 acres, including a 25-foot buffer along the preserved Wetlands EEE and HHH and a 50-foot buffer adjacent to Marshall Creek and preserved Wetland EP; (4) a wetland creation area of 0.82 acres, contiguous with the wetland preservation area; and (5) an upland buffer located adjacent to the wetland creation area. The wetland creation area will be graded to match the grades of the adjacent bottomland swamp and planted with wetland tree species. Small ponds of varying depths will be constructed in the wetland creation area to provide varying hydrologic conditions similar to those of the wetland to be impacted. The wetland creation area is designed so as to not de-water the adjacent wetlands. All of the mitigation lands will be encumbered with a conservation easement consistent with the requirements of Section 704.06, Florida Statutes. The proposed mitigation will offset the wetland functions and values lost through the wetland impact on Parcel D. The wetland creation is designed to mimic the functions of the impact area, but is located within a larger ecological system that includes hardwood wetland headwaters. The long-term ecological value of the mitigation area will be greater than the long-term value of the wetland to be impacted because; (1) the mitigation area is part of a larger ecological system; (2) the mitigation area is part of an intact wetland system; (3) the wetland to be impacted will be unlikely to maintain its functions in the long-term; and (4) the mitigation area provides additional habitat for animal species not present in the wetland to be impacted. Certain features will prevent adverse secondary impacts in the vicinity of the roadway such as: (1) a retaining wall which would prevent migration of wetland animals onto the road; (2) a guard rail to prevent people from moving from the uplands into wetlands; and (3) a vegetated hedge to prevent intrusion of light and noise caused by automotive use of the roadway.
Recommendation Having considered the foregoing Findings of Fact and Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is RECOMMENDED: That a final order be entered granting the subject application for modification of Permit 4-109-0216A-ERP so as to allow construction and operation of the Parcel D project at issue, with the addition of the inclusion of a supplemental permit condition regarding the vegetated natural buffers for Lots 16 through 19 described and determined above. DONE AND ENTERED this 9th day of April, 2001, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 9th day of April, 2001.
The Issue The issue in this case was whether the Respondent, City of Cape Coral (City), was entitled to an Individual Environmental Resource Permit (Permit) that would allow removal of the Chiquita Boat Lock (Lock) and associated uplands, and installation of a 165-foot linear seawall in the South Spreader Waterway in Cape Coral, Florida.
Findings Of Fact Based on the parties' stipulations and the evidence adduced at the final hearing, the following findings of fact are made: The Parties The Department is the administrative agency of the State of Florida statutorily charged with, among other things, protecting Florida's water resources. As part of the Department's performance of these duties, it administers and enforces the provisions of chapter 373, part IV, Florida Statutes, and the rules promulgated thereunder in the Florida Administrative Code. Pursuant to that authority, the Department determines whether to issue or deny applications for environmental resource permits. The City is a Florida municipality in Lee County. The City is the applicant for the Permit allowing the removal of the Lock and installation of a seawall (Project). The Project is located within the geographic boundary of the City. The South Spreader Waterway is a perimeter canal separating the City's canal system from shoreline wetlands to the west and south, which run the length of Matlacha Pass to the mouth of the Caloosahatchee River at San Carlos Bay.1/ The Association is a Florida non-profit corporation that was created in 1981. The Association was created to safeguard the interests of its members. The Association has approximately 150 members who reside in Matlacha and Matlacha Isles, Florida. A substantial number of its members have substantial interests in the use and enjoyment of waters adjacent to and surrounding Matlacha. The Association's members were particularly interested in protecting the water quality of the surface waters in the area. Matlacha is an island community located to the northwest of Cape Coral, the South Spreader Waterway, and the Lock. Matlacha is located within Matlacha Pass Aquatic Preserve. Matlacha Pass is classified as a Class II waterbody designated for shellfish propagation or harvesting, and is an Outstanding Florida Water (OFW). See Fla. Admin. Code R. 62-02.400(17)(b)36; 62-302.700(9)(h). Petitioner, Karl Deigert, is a resident and property owner in Matlacha. Mr. Deigert is the president of the Association. Mr. Deigert’s house in Matlacha is waterfront. He holds a captain’s license and has a business in which he gives sightseeing and ecological tours by boat of the waters around Matlacha. He fishes in the waters around his property and enjoys the current water quality in the area. He is concerned that removal of the Lock would have negative effects on water quality and would negatively impact the viability of his business and his enjoyment of the waters surrounding Matlacha. Petitioner, Melanie Hoff, is a resident and property owner in St. James City. St. James City is located to the southwest of Cape Coral. Ms. Hoff’s property is located within five nautical miles of the Lock. Ms. Hoff engages in various water sports and fishes in the waters around her property. She moved to the area, in part, for the favorable water quality. She is concerned that removal of the Lock would negatively impact water quality and her ability to use and enjoy waters in the area. Petitioner, Robert S. Zarranz, is a resident and property owner in Cape Coral. Mr. Zarranz’s house in Cape Coral is waterfront. He is an avid fisherman and boater. He is concerned that removal of the Lock would negatively impact water quality, and that the quality of fishing in the area would decline as a result. Petitioner, Yolanda Olsen, is a resident and property owner in Cape Coral. Ms. Olsen’s house in Cape Coral is waterfront. She enjoys watersports and birdwatching in the areas around her property. She is concerned that removal of the Lock would negatively impact water quality, and that her ability to enjoy her property and the surrounding waters would suffer as a result. Petitioner, Jessica Blanks, is a resident and property owner in Cape Coral. Ms. Blanks’ house in Cape Coral is waterfront. She is concerned that removal of the Lock would negatively impact water quality, and that her ability to enjoy her property and the surrounding waters would suffer as a result. Petitioner, Joseph Michael Hannon, is a resident and property owner in Matlacha. Mr. Hannon is a member of the Association. He enjoys boating, fishing, and kayaking in the waters surrounding Matlacha. He is concerned that removal of the Lock would negatively impact water quality, and that his ability to enjoy his property and the surrounding waters would suffer as a result. Petitioner, Debra Hall, did not appear at the final hearing and no testimony was offered regarding her standing. The Project and Vicinity The Project site is 0.47 acres. At the Lock location, the South Spreader Waterway is 200 feet wide, and includes a 125-foot wide upland area secured by two seawalls, the 20-foot wide Lock, a 32-foot wide upland area secured by one seawall, and 23 feet of mangrove wetlands. The Lock is bordered to the north by property owned by Cape Harbour Marina, LLC, and bordered to the south by mangrove wetlands owned by the state of Florida. The 125-foot wide upland area and the 20-foot wide Lock form a barrier separating the South Spreader Waterway from the Caloosahatchee River. The preponderance of the competent substantial evidence established that the South Spreader Waterway behind the Lock is not tidally influenced, but would become tidally influenced upon removal of the Lock. Joint Exhibit 1 at p. 46. The City proposes to remove the Lock and one of the seawalls, reducing the 125-foot upland area to 20 feet. The proposed future condition of the area would include 125 feet of open canal directly connecting the South Spreader Waterway with the Caloosahatchee River. Joint Exhibit 1 at p. 47. The primary purpose of the Lock's removal is to alleviate safety concerns related to boater navigation. The Project's in-water construction includes demolition and removal of the existing Lock, removal of existing fill in the 125-foot upland area, removal of existing seawalls, and construction of replacement seawalls. The City would employ Best Management Practices (BMPs) throughout the course of the Project, including sediment and erosion controls such as turbidity barriers. The turbidity barriers would be made of a material in which manatees could not become entangled. All personnel involved with the Project would be instructed about the presence of manatees. Also, temporary signs concerning manatees would be posted prior to and during all in-water project activities. History of the South Spreader Waterway In the mid-1970's, the co-trustees of Gulf American Corporation, GAC Properties Credit, Inc., and GAC Properties, Inc., (collectively GAC) filed for after-the-fact permits from the Department's predecessor agency (DER), for the large dredge and fill work project that created the canal system in Cape Coral. In 1977, DER entered into CO 15 with GAC to create the North and South Spreader Waterways and retention control systems, including barriers. The Lock was one of the barriers created in response to CO 15. The Spreader Waterways were created to restore the natural hydrology of the area affected by GAC's unauthorized dredging and filling activity. The Spreader Waterways collected and retained surface runoff waters originating from the interior of Cape Coral's canal system. The South Spreader Waterway was not designed to meet water quality standards, but instead to collect surface runoff, then allow discharge of the excess waters collected over and through the mangrove wetlands located on the western and southern borders of the South Spreader Waterway. This fresh water flow was designed to mimic the historic sheet flow through the coastal fringe of mangroves and salt marshes of the Caloosahatchee River and Matlacha Pass estuaries. The fresh water slowly discharged over the coastal fringe until it finally mixed with the more saline waters of the estuaries. The estuarine environments located west and south of the Lock require certain levels of salinity to remain healthy ecosystems. Restoring and achieving certain salinity ranges was important to restoring and preserving the coastal fringe. In 1977 GAC finalized bankruptcy proceedings and executed CO 15. CO 15 required GAC to relinquish to the state of Florida the mangrove wetlands it owned on the western and southern borders of the South Spreader Waterway. This land grant was dedicated by a warranty deed executed in 1977 between GAC and the state of Florida. The Petitioners' expert, Kevin Erwin, worked as an environmental specialist for DER prior to and during the construction of the Spreader Waterways. Mr. Erwin was DER's main representative who worked with the GAC co-trustees to resolve the massive dredge and fill violation and design a system to restore the natural hydrology of the area. Mr. Erwin testified that the Lock was designed to assist in retention of fresh water in the South Spreader Waterway. The fresh water would be retained, slowed down, and allowed to slowly sheet flow over and through the coastal fringe. Mr. Erwin also testified that the South Spreader Waterway was not designed to allow direct tidal exchange with the Caloosahatchee River. In Mr. Erwin's opinion, the South Spreader Waterway appeared to be functioning today in the same manner as originally intended. Breaches and Exchange of Waters The Department's second amended notice of intent for the Project, stated that the Project was not expected to contribute to current water quality violations, because water in the South Spreader Waterway was already being exchanged with Matlacha Pass and the Caloosahatchee River through breaches and direct tidal flow. This second amended notice of intent removed all references to mitigation projects that would provide a net improvement in water quality as part of the regulatory basis for issuance of the permit. See Joint Exhibit 1 at pp. 326-333. The Department's witnesses testified that waters within the South Spreader Waterway currently mix with waters of the Caloosahatchee River when the Lock remains open during incoming and slack tides. A Department permit allowed the Lock to remain open during incoming and slack tides. Department witness, Megan Mills, the permitting program administrator, testified that she could not remember the exact date that permit was issued, but that it had been "a couple years." The location of breaches in the western and southern banks of the South Spreader Waterway was documented on another permit's drawings and pictures for a project titled "Cape Coral Spreader Waterway Restoration." See Cape Coral Ex. 9. Those documents located three breaches for repair and restoration identified as Breach 16A, Breach 16B, and Breach 20. The modeling reports and discussion that support the City's application showed these three breaches connect to Matlacha Pass Aquatic Preserve. Breach 20 was described as a connected tidal creek. Breach 16A and 16B were described as allowing water movement between Matlacha Pass and the South Spreader Waterway only when relatively high water elevations occurred in Matlacha Pass or in the South Spreader Waterway. The Department's water quality explanation of "mixing," was rather simplistic, and did not consider that the waterbody in which the Project would occur has three direct connections with an OFW that is a Class II waters designated for shellfish propagation or harvesting. Such a consideration would require the Department to determine whether to apply the OFW permitting standards, and the Class II waters permitting criteria in section 10.2.5 of the Environmental Resource Permit Applicant's Handbook, Volume I. See Fla. Admin Code R. 62-330.302(1)(a); 62-4.242(2); and 62-302.400(17)(b)36. The Caloosahatchee River, at its entrance to the South Spreader Waterway, is a Class III waters restricted for shellfish harvesting. The mouth of the Caloosahatchee River is San Carlos Bay, which is a Class II waters restricted for shellfish harvesting. There was no evidence that the Department's regulatory analysis considered that the waterbody in which the Project would occur directly connects to Class III waters that are restricted for shellfish harvesting, and is in close proximity to Class II waters that are restricted for shellfish harvesting. See Fla. Admin. Code R. 62-302.400(17)(b)36. and 62-330.302(1)(c).2/ Total Nitrogen The City's expert, Anthony Janicki, Ph.D., testified that nitrogen concentrations in the Caloosahatchee River were higher than in the South Spreader Waterway in the years 2017 and 2018. Thus, he opined that if the Lock is removed, water from the South Spreader Waterway would not negatively impact the Caloosahatchee River. However, the City's application was supported by an analysis, with more than a decade of monitoring data, which showed nitrogen concentration values were comparable inside the South Spreader Waterway and in the Caloosahatchee River. Dr. Janicki also used the Department's Hydrologic Simulation Program – FORTRAN (HSPF) watershed model to estimate the Total Nitrogen (TN) loading that would enter the Caloosahatchee River through the Chiquita Lock. Dr. Janicki estimated that TN loading to the Caloosahatchee River, after removal of the Chiquita Lock, would amount to 30,746 pounds per year. The Caloosahatchee River is listed as impaired for nutrients and has a TN Total Maximum Daily Load (TMDL) that was set by the Department in 2009. Dr. Janicki opined that removing the Lock would not result in adverse impacts to the surrounding environment. But the Petitioners obtained his concession that his opinion was dependent on the City's completion of additional water quality enhancement projects in the future as part of its obligations under the Caloosahatchee Estuary Basin Management Action Plan (BMAP) for achieving the TN TMDL. Dr. Janicki additionally testified that the potential TN loading to the Caloosahatchee River did not anticipate an actual impact to the River's water quality because the TN loads from the South Spreader Waterway were already factored into the 2009 TMDL. He essentially testified that the Lock's removal was anticipated and was factored into the model when the TMDL was established in 2009. Thus, the Petitioners proved by a preponderance of the competent and substantial evidence that the Department and the City were not aligned regarding how the City's application would provide reasonable assurances of meeting applicable water quality standards. The Petitioners proved by a preponderance of the competent and substantial evidence that the City relied on future projects to provide reasonable assurance that the removal of the Lock would not cause or contribute to violations of water quality standards in the Caloosahatchee River and the Matlacha Pass Aquatic Preserve. The Petitioners proved by a preponderance of the competent and substantial evidence that the Department relied on a simplistic exchange of waters to determine that removal of the Lock would not cause or contribute to violations of water quality standards in the Caloosahatchee River and the Matlacha Pass Aquatic Preserve. Water Quantity and Salinity The engineering report that supports the City's application stated that when the Lock is removed, the South Spreader Waterway behind the Lock will become tidally influenced. With the Lock removed, the volume of daily water fluxes for the South Spreader Waterway would increase from zero cubic meters per day to 63,645 cubic meters per day. At the location of Breach 20, with the Lock removed, the volume of daily water fluxes would drastically decrease from 49,644 cubic meters per day to eight cubic meters per day. Dr. Janicki testified that Breach 20 was connected to a remnant tidal creek that meanders and eventually empties into an embayment. The evidence demonstrated that the embayment is Punta Blanca Bay, which is part of the Matlacha Pass Aquatic Preserve. Dr. Janicki opined that Breach 20 was an area of erosion risk and sediment transport into downstream mangroves that would be significantly reduced by removing the Lock. He explained that the reductions in flow would result in reductions in velocities through Breach 20 and in the South Spreader Waterway itself. Mr. Erwin testified that Breach 20 was not a "breach."3/ He described it as the location of a perpendicular intersection of the South Spreader Waterway with a small tidal creek, which connected to a tidal pond further back in the mangroves. Mr. Erwin testified that an "engineered sandbag concrete structure" was built at the shallow opening to limit the amount of flow into and out of this tidal creek system. But it was also designed to make sure that the tidal creek system "continued to get some amount of water." As found above, Lock removal would drastically reduce the volume of daily water fluxes into and out of Breach 20's tidal creek system. Mr. Erwin also testified that any issues with velocities or erosion would be exemplified by bed lowering, siltation, and stressed mangroves. He persuasively testified, however, that there was no such evidence of erosion and there were "a lot of real healthy mangroves." Mr. Erwin opined that removal of the Lock would cause the South Spreader Waterway to go from a closed, mostly fresh water system, to a tidal saline system. He described the current salinity level in the South Spreader Waterway to be low enough to support low salinity vegetation and not high enough to support marine organisms like barnacles and oysters. The City's application actually supports this opinion. Using the Environmental Fluid Dynamics Code (EFDC) model developed by Dr. Janicki for this Lock removal project, comparisons were made describing the salinity distribution within the South Spreader Waterway. The model was run with and without the Lock, for both a wet and dry year. Dr. Janicki testified, and the model showed, that removal of the Lock would result in increased salinity above the Lock and decreased salinity downstream of the Lock. However, he generally opined that the distribution of salinities was well within the normal ranges seen in this area. The City's application also concluded that the resultant salinities did not fall outside the preferred salinity ranges for seagrasses, oysters, and a wide variety of fish taxa. However, Dr. Janicki did not address specific changes in vegetation and encroachment of marine organisms that would occur with the increase in salinity within the South Spreader Waterway. Secondary Impacts to the Mangrove Wetlands Mr. Erwin testified that the mangroves located on the western and southern borders of the South Spreader Waterway are currently in very good health. He additionally testified that loss of the current fresh water hydraulic head and an increase in salinity within the South Spreader Waterway would negatively impact the health of the mangrove wetlands. In addition, the City's application stated that removing the Lock would result in a drop in the water level of one to one and a half feet within the South Spreader Waterway. Mr. Erwin credibly and persuasively testified that a drop in water level of only a few inches would have negative effects on the health of mangroves, and that a drop of a foot could result in substantial mangrove die-off. Mr. Erwin testified that the mangrove wetlands adjacent to the South Spreader Waterway consist of a variety of plants and algae in addition to mangroves. He described the wetlands as a mangrove community made up of different types of mangroves, and epiphytic vegetation such as marine algae. This mangrove community provides habitat for a "wide range of invertebrates." He further testified that these plants and algae uptake and transform the nutrients that flow over and through the mangrove wetlands before they reach the receiving waters. Thus, the mangrove wetlands on the western and southern borders of the South Spreader Waterway serve to filter nutrients out of the water discharged from the Waterway before it reaches Matlacha Pass and the Caloosahatchee River. Mr. Erwin's credible and persuasive testimony was contrary to the City's contention that Lock removal would not result in adverse impacts to the mangrove wetlands adjacent to the South Spreader Waterway. The City and the Department failed to provide reasonable assurances that removing the Lock would not have adverse secondary impacts to the health of the mangrove wetlands community adjacent to the South Spreader Waterway. Impacts to Fish and Wildlife, Including Endangered and Threatened Species The Florida Fish and Wildlife Conservation Commission (FWC) reviewed the City's application and determined that if BMPs for in-water work were employed during construction, no significant adverse impacts on fish and wildlife were expected. For example, temporary signs concerning manatees would be posted prior to and during all in-water project activities, and all personnel would be instructed about the presence of manatees. The FWC determination only addressed direct impacts during in-water construction work. The City's application contained supporting material that identified the major change resulting from removal of the Lock that may influence fish and wildlife in the vicinity of the Project, was the opportunity for movement to or from the South Spreader Waterway canal system. Threatened and endangered species of concern in the area included the Florida manatee and the smalltooth sawfish. The City's application stated that literature review showed the smalltooth sawfish and the Florida manatee utilized non-main-stem habitats, such as sea-wall lined canals, off the Caloosahatchee River. The City cited studies from 2011 and 2013, which showed that non-main-stem habitats were important thermal refuges during the winter, and part of the overall nursery area for smalltooth sawfish. The City concluded that removal of the Lock "would not be adverse, and would instead result in increased areas of useable habitat by the species." However, the Petitioner's expert witness, John Cassani, who is the Calusa Waterkeeper, testified that there is a smalltooth sawfish exclusion zone downstream of the Lock. He testified that the exclusion zone is a pupping area for smalltooth sawfish, and that rapid salinity fluctuations could negatively impact their habitat. The City also concluded that any impacts to the Florida manatee would not be adverse, "and would instead result in increased areas of useable habitat by the species, as well as a reduction in risk of entrapment or crushing in a canal lock system." At the same time, the City acknowledged that "watercraft collision is a primary anthropogenic threat to manatees." The City's literature review included a regional assessment by FWC's Fish and Wildlife Research Institute (FWRI) from 2006. Overall, the FWRI report concluded that the mouth of the Caloosahatchee River, at San Carlos Bay, was a "hot spot" for boat traffic coinciding with the shift and dispersal of manatees from winter refugia. The result was a "high risk of manatee- motorboat collisions." In addition, testimony adduced at the hearing from an 18-year employee of Cape Harbour Marina, Mr. Frank Muto, was that Lock removal would result in novice boaters increasing their speed, ignoring the no-wake and slow-speed zones, and presenting "a bigger hazard than the [L]ock ever has." Boater Navigation Concerns Oliver Clarke was the City’s principal engineer during the application process, and signed the application as the City's authorized agent. Mr. Clarke testified that he has witnessed boater congestion at the Lock. He also testified that lack of boating experience and weather concerns can exacerbate the boater congestion issues at the Lock. Petitioners presented the testimony of Mr. Frank Muto, the general manager of Cape Harbour Marina. Mr. Muto has been at the Cape Harbour Marina for 18 years. The marina has 78 docks on three finger piers along with transient spots. The marina is not currently subject to tidal flows and its water depth is between six and a half and seven and a half feet. He testified that they currently have at least 28 boats that maintain a draft of between four and a half and six feet of water. If the water depth got below four feet, those customers would not want to remain at the marina. Mr. Muto further testified that the Lock was in place when the marina was built, and the marina and docks were designed for an area with no tidal flow. Mr. Muto also testified that he has witnessed several boating safety incidents in and around the Lock. He testified that he would attribute almost all of those incidents to novice boaters who lack knowledge of proper boating operations and locking procedures. Mr. Muto additionally testified that there is law enforcement presence at the Lock twenty-four hours a day, including FWC marine patrol and the City's marine patrol.
Conclusions For Petitioners: J. Michael Hannon, Qualified Representative 2721 Clyde Street Matlacha, Florida 33993 John S. Turner, Esquire Peterson Law Group Post Office Box 670 Fort Myers, Florida 33902 For Respondent City of Cape Coral: Craig D. Varn, Esquire Amy Wells Brennan, Esquire Manson Bolves Donaldson Varn, P.A. 106 East College Avenue, Suite 820 Tallahassee, Florida 32301 Steven D. Griffin City of Cape Coral Assistant City Attorney Post Office Box 150027 Cape Coral, Florida 33915-0027 For Respondent Department of Environmental Protection: Kirk Sanders White, Esquire Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, RECOMMENDED that: The Department of Environmental Protection enter a final order denying Individual Environmental Resource Permit Number 244816-005 to the City of Cape Coral for removal of the Chiquita Boat Lock. The final order deny Petitioners' request for an award of attorney's fees and costs. DONE AND ENTERED this 12th day of December, 2019, in Tallahassee, Leon County, Florida. S FRANCINE M. FFOLKES Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 12th day of December, 2019.