The Issue The issue is whether the 100 foot separation of respondents/applicants sewage treatment plant from the surface water management system is adequate.
Findings Of Fact Based upon all of the evidence, the following supplemental findings of fact are determined: Background Respondents/applicant, John D. Remington and Bolton S. Drackett (applicants), are the owners of record of approximately two thirds, or around 2,700 acres, of Keewaydin Island (Key Island), which lies just south of the mainland portion of the City of Naples, Florida. In conjunction with a planned luxury development of forty-two homes on Key Island, applicants have filed an application with respondent, South Florida Water Management District (District), seeking the issuance of a permit authorizing the construction and operation of a surface water management system (system) through which stormwater runoff from the project will be directed and controlled. Petitioner, Florida Audubon Society (FAS), has initiated this proceeding to contest the issuance of a permit. In an earlier and separate proceeding (DOAH Case No. 90-2415), applicants applied for a permit from the Department of Environmental Regulation (DER) to construct a wastewater treatment plant (plant) to serve the planned development. The permit was issued on January 2, 1990, and because all appeals by FAS in Case No. 90-2415 have been concluded, that proceeding is now final. Although the wastewater treatment plant has not yet been constructed, the parties agree that it will be situated more than one hundred feet from the surface water management system. This distance (100 feet) is the minimum amount of space allowed by District rule between the plant and system. Even so, the purpose of the remand proceeding is to determine whether that amount of separation is adequate. Thus, the factual issue here is whether the treated wastewater from the plant and filter fields will enter the surface water management system and cause a violation of applicable water quality standards and other relevant District criteria. In support of their respective positions on this issue, the parties have presented the testimony of a number of experts. In resolving the conflict in their testimony, the undersigned has accepted the more credible and persuasive testimony which is embodied in the findings below. A Brief Description of the Development and System The proposed development and surface water management system were described in detail in the prior recommended order entered in this case. For purposes of this Supplemental Recommended Order, it need only be noted that Key Island now has a lodge, guest quarters and recreation facilities, all presently served by septic tanks. Access to the island is provided by motor launch from an existing shore station. Subaqueous utility crossings from the mainland provide electric power and potable water to the island. The planned development includes the construction of forty-two large luxury homes and an expansion of the lodge facilities to accommodate the needs of the new residents. The homes will be built in phases with approximately ten to be built in the first year. The entire project may take as long as seven or eight years to complete. The proposed surface water management system was designed to handle a seventy-five residential unit development. However, by virtue of a reduction in size imposed by the City of Naples, the project has been reduced to forty-two homes. Even so, the capacity of the system has not been downsized. Therefore, the system as designed will more than accommodate all proposed development on the island. The development area has been divided into seven surface water management basins based upon seven existing natural water sheds on the upland portion of the project. Each basin will have a system of inlets, culverts and swales which will direct runoff to control structures. The dry swales are approximately one foot deep and five to ten feet wide and run parallel on both sides of the cart paths that link the various portions of the project. The cart paths, which will be at an elevation of 5.5 feet above mean sea level (NGVD), will have culverts running underneath to aid in maintaining the natural flow of water and limit impounding of water. The swale bottoms are designed to be one foot below the cart path elevation, or at 4.5 feet NGVD, and will be dry, except during significant rain events, because they are designed so that the bottom of the swale is at least one foot above the average wet season water table. Both the cart paths and swale system utilize a design system that is common to residential developments. Once the water reaches a specified height, it goes over the control structure and is discharged downstream into spreader swales from which the water is dispersed into either interior, low wetland areas or into two artificial lakes (7.3 and 1.0 acres in size) created for wet detention. Basins one, two, three, four and seven are designed to treat water quality by the dry detention method, that is, by the unlined swales that parallel cart paths, while water quality is accomplished in basins five and six by best management practices and wet retention, that is, the two artificial lakes. The Wastewater Treatment Plant The DER permit was issued on January 2, 1990, and carries an expiration date of January 2, 1995. It authorizes applicants to: construct a 0.035 MGD extended aeration process wastewater treatment plant with reclaimed water to dual absorption fields located at the project site as depicted on Wilson, Miller, Barton, Soll & Peek, Inc. design drawings, project number 6270, sheets 1 thru 5 of 5, dated March 20, 1989, revised October 16, 1989 and received October 19, 1989. The design drawings were submitted in support of construction application, engineering report, hydrologeolic characteristics and hydraulic modeling for effluent disposal report and related documents, dated March 20, 1989. The hydraulic capacity of the plant is limited to 0.030 MGD based on the reclaimed water disposal system. The collection system shall not exceed the 0.030 MGD hydraulic capacity as well. The wastewater treatment plant is designed to meet all DER water quality, health and safety standards. For example, the plant must achieve 90% removal of biological oxygen demand (BOD) and 90% removal of total suspended solids from the raw wastewater, or effluent levels below 20 parts per million for BOD and 10 parts per million suspended solids, whichever is more stringent. The plant must also have twenty-four hour detention in the aeration chamber and four hours detention in the clarifer. Further, a chlorine chamber contact time of fifteen minutes is required. In addition, DER has issued the permit with certain specific conditions. Among others, these include standards as to effluent chlorine residuals, the requirement that a professional engineer inspect the construction, operation requirements, sampling schedules, defined perameter levels, and the establishment of a hydraulic plant load (permitted maximum daily flow) at 30,000 gallons per day. By issuing the permit, DER has concluded that up to 30,000 gallons per day of sewage effluent can be treated and disposed of by the plant filter fields without violation of applicable DER water quality, health and safety standards. The wastewater treatment plant will be located on a centralized utility site within basin seven of the system. There are also gravity sand filters and a drainfield effluent disposal system located in basin six, which is the northeastern corner of the project. The plant will provide a high degree of treatment and disinfection for the effluent before it is discharged to the filter field. The filtered (treated) effluent will flow by gravity main to the filter fields located in an adjacent basin. Two filter fields will be used in disposing of the treated wastewater effluent. Constructed as sand mounds at a grade level of two or three feet above the existing island elevation, each filter will have dimensions of twenty feet wide and four hundred feet long. The filter fields will be constructed as a bed of gravel wrapped in filter cloth and placed within a mound of soil. A perforated four-inch pipe will be installed within the gravel bed at 5.5 feet NGVD to distribute the effluent through the filter beds. The effluent will then percolate downward and laterally away from the bed and into the groundwater table. At that point, the effluent will become indistinguishable from the groundwater Because the total daily flow will be pumped alternately into one part of the two sections of the drainfield, this allows one filter field to "rest" for a seven-day period during the use of the other filter field, thereby avoiding saturation. Therefore, the average theoretical maximum input into a filter field over a one year period at the plant's maximum capacity is 15,000 gallons per day. The plant was designed and permitted for maximum daily flows at all times of the year. However, the actual operating conditions will reflect significantly less flows due to the seasonality of the population and occupancy levels. More specifically, the plant was designed and permitted for seventy- five dwelling units and ancillary uses with an estimated maximum design flow of 28,450 gallons per day. The approved planned development will contain only forty-two dwelling units and ancillary uses with a maximum design flow of 21,200 gallons per day. Therefore, the permitted plant will treat the wastewater to a higher level due to the reserve capacity, and the plant will rarely be used at over fifty percent of its available capacity. Revised projected wastewater flows will range from daily loads of 2,325 gallons per day during the months of August and September to a high of 15,137 gallons per day during the month of February. This projected usage is consistent with historical occupancy and usage trends in the Naples area which show that occupancy of homes is at its peak during the dry season (the cooler winter months) and substantially lower during the wet season (the hot summer months). Applicants' projected wastewater flows are found to be reasonable and are hereby accepted. In making this finding, the undersigned has rejected the contention by FAS that the daily wastewater flows will be higher than that projected by the applicants and the plant will operate at maximum capacity for sustained periods of time. The system plans reflect that there will be swales within basin six located between one hundred ten and one hundred twenty feet to the west of the filter fields. These swales run parallel along a cart path and flow to the north discharging into an artificial lake at the north end of the project. The swales in this basin have a bottom elevation of 4.5 feet NGVD and decrease to an elevation of 3.5 feet NGVD at the point of discharge into the artificial lake. Adequacy of Separation Between Plant and System Rule 40E-4.091, Florida Administrative Code, adopts and incorporates by reference a document known as the "Basis for Review for Surface Water Management Permit Applications within the South Florida Water Management District - September 1989" (Basis for Review). Section 3.2.2.8 of the Basis for Review reads as follows: Sewage treatment percolation ponds. Above ground pond dikes shall not be within 200 feet of water bodies or 100 feet of dry detention/ detention areas. Additional calculations by the applicant may be necessary in unusual cases requiring deviations from these dimensions. The purpose of the above section is to provide adequate separation between above-ground percolation ponds and surface water management systems in case the percolation pond dike fails. For example, above grade percolation ponds contain large volumes of sewage treatment plant effluent. If a pond dike should fail, a large portion of effluent would be quickly released into the adjacent ground. The minimum 100-foot separation is designed to provide adequate distance for percolation into the ground prior to infiltrating the surface water management system. However, filter fields contain lesser volumes of effluent than do percolation ponds, and should a filter field fail, the effluent will trickle out the side of the field with a much lower rate of effluent release than from a failed pond dike. In accordance with the District rule, applicants have proposed to locate the surface water management system more than one hundred feet from the wastewater treatment plant and filtration beds. Even though the rule standards have been met, the purpose of this remand proceeding is to determine whether that amount of separation is adequate to prevent adverse impacts to the water quantity and water quality functions of the system from the operation and location of the filter fields. The Computer Models As a part of their application filed with DER in 1989, applicants' witness Missimer prepared and submitted a report known as "Hydrogeologic Characteristics and Hydraulic Modeling for Effluent Disposal at Keewaydin Club". The report was based on a computer model known as "Modflow" and was designed to show the increase in elevation of the water table for a loading rate of 30,000 gallons per day alternating between the two filtration beds. The purpose of the modeling analysis filed with DER was to investigate whether the plant would continue to discharge effluent to the drainfields under the most extreme conditions. The model demonstrated that the effluent discharge would not be impaired even under conditions that are beyond any reasonable or probable operating conditions. After reviewing the model, DER accepted those results and issued a permit. Utilizing in large part the underlying assumptions and parameters of the Missimer model, and without performing any independent field evaluation on the site, FAS witness Chin ran the model to investigate the impact of the operation of the plant on the system. Because the model used by Dr. Chin was not constructed for the design of a surface water management system, but rather was constructed for the purpose of designing an adsorption field, without modification it provided a more than worst case scenario of impacts associated with the operation of a plant. In this case, Dr. Chin utilized the ultra- conservative assumptions used in designing the adsorption field and made no revisions to the model. Thus, it is found that the model as used by Dr. Chin, and any conclusions drawn from the model alone, are not a sufficient or reasonable basis for evaluating the impact of the plant on the system. The model used by Dr. Chin is not representative of the natural occurring conditions on the island or the reasonably expected plant flow rates. Moreover, in developing the worst case scenario, as opposed to reasonable expectations, both the Chin and Missimer models incorporated the simultaneous occurrence of certain conservative assumptions including an impermeable flow boundary, a year round wet season water table elevation, a conservative rate of transmissivity, and a constant rate of evapotranspiration. The use of these assumptions caused the model output to grossly overstate the effects of the plant on the system in the following manner. First, by assuming a flow barrier on the island, the model had the effect of overestimating the height of the groundwater mound from operation of the plant than would occur if no boundary were used. Second, the assumption of a year-round wet season groundwater level is unrealistic since groundwater levels fluctuate seasonally, receding to near zero NGVD on the island during the dry season. Thus, the model overestimated the height of the groundwater level. Further, by using only the upper ten feet of the water table aquifer in calculating the rate of transmissivity, the model incorporated a much lower rate than would be attained had the entire thickness (74 feet) of the aquifer been used. This also resulted in an over-estimation in the height of the mound from the operation of the plant. Finally, by assuming a constant rate of evapotranspiration, the model "grossly exaggerated" the impact to the groundwater level from operation of the plant. In reality, as the water table increases, the loss of water from evapotranspiration increases significantly and constitutes a major output of a water budget. Besides the foregoing assumptions, the Chin model also assumed a continuous loading rate of 30,000 gallons per day for a period of up to one year. While the District should properly consider the permitted flow rate of the plant in evaluating a worst case of potential impact, there was no evidence substantiating any likelihood of the plant actually producing 30,000 gallons per day for 365 consecutive days in conjunction with all other conservative assumptions discussed above. The more reasonable and accepted method of analyzing the impact of plant flows is to examine the peak month's average day flow over a six-month period. As noted earlier, for the proposed forty-two units, the peak day flow is estimated to be approximately 21,200 gallons per day. Therefore, it is highly probable that actual flow rates will be much lower than the maximum plant capacity of 30,000 gallons per day. By failing to use the more reasonable and realistic reduced flow rates, the Chin model overestimated the elevation of the groundwater level from the operation of the plant. In contrast, the Missimer analysis demonstrates that it is extremely unlikely that the plant output will ever elevate groundwater to the extent that it would reach the system swales by either surface water or groundwater flow. The foregoing modeling assessments, including the criticisms of the Chin model, were concurred in by the District expert. Water Quantity Impacts There is no credible evidence to support a finding that the operation of the plant will adversely impact the ability of the system to provide adequate flood protection and drainage. Indeed, the more credible evidence shows that an alteration of existing drainage patterns will not occur by virtue of the operation of the plant, and the post-development discharge rates will not exceed the pre-development discharge rates. Therefore, the undersigned's previous finding that applicants have provided reasonable assurance that the the system provides adequate protection and drainage is not altered after considering the operation and location of the plant. There is insufficient credible evidence to support a finding that the plant's operation will adversely impact the system functions in such a way as to cause adverse water quantity impacts on receiving waters and adjacent lands. Indeed, the post-development discharge rate approximates the pre-development discharge rate on receiving waters, the ultimate receiving water body (the Gulf of Mexico) has an infinite capacity to receive water, and there are no adjacent lands subject to flooding from discharge of the system regardless of whether there is any impact of the plant on the system. There is no credible evidence to support a finding that the plant will cause the system to have an adverse impact on surface and groundwater levels and flows. Rather, the more persuasive evidence shows that the plant's operation will not result in groundwater elevation in the area of the system that would cause the impoundment of water or prevent the percolation of water into the soil. In addition, the overflow levels for control structures will operate as designed to insure against over-drainage or flooding. Finally, the operation of the filter fields will not cause adverse impacts on surface and groundwater levels and flows. Water Quality Impacts The operation of the plant will not impair the water quality functions of the system. This is because the swales will continue to detain the first flush of run-off allowing the majority of the suspended solids and other pollutants to settle out regardless of the operation of the plant. Further, in the unlikely event the treated wastewater effluent reached the system, it would be indistinguishable from the stormwater or rainfall due to the high level of treatment from the plant, the filter fields and dilution from groundwater and rainfall. The operation of the plant will not cause adverse water quality impacts on the receiving waters. In making this finding, the undersigned notes initially that the plant is permitted by DER, and therefore it is assumed to comply with all DER water quality standards. Second, there is no evidence that the system will impact the operation of the plant. In the event the groundwater mixed with treated effluent resurfaces, there would be no adverse impact to the surface water quality. This is because the treated effluent from the plant exceeds state water quality standards. Once the treated effluent becomes a part of the groundwater, it is unlikely that it will resurface again in the areas of the swales, which are more than one hundred ten feet away. Indeed, in order for the groundwater with effluent to travel that distance, it would have been in the groundwater system for at least one hundred days. This period of time is more than sufficient for the denitrification and adsorption processes to remove all nutrients. Even if the worst case scenario became a reality and the groundwater reached the swale bottoms, it would only result in a wetting of the ground and would not be of sufficient quantity to create a flow of water in the swale to travel off-site impacting a receiving water. In any event, at that point, any groundwater resurfacing that distance away would no longer be effluent. Finally, during abnormal conditions, such as a hurricane or large storm event, the groundwater may rise to the surface and mix with the surface water and enter the system. However, any effluent already significantly diluted under normal circumstances would be indistinguishable from the stormwater or rainfall. Adverse Environmental Impacts There is no credible evidence that the operation of the plant filter fields will adversely impact the system in such a manner as to cause an adverse environmental impact. In so finding, the undersigned rejects the contention that the system will act as a conduit for treated effluent to travel off-site to the ponds, marsh, mangrove areas or receiving waters. The evidence shows that the design of the filter fields and high permeability of the island soils will prevent the surface flow of effluent to the system swales. The elevation of the swales above the groundwater table level will prevent the introduction of effluent into the swale system. In the unlikely event the groundwater reaches the bottom elevation of the swale, there would be no significant environmental impact because the quality of effluent would be indistinguishable from the groundwater due to the high level of treatment and dilution, and such water would still be further treated by the system before discharge to receiving bodies. The location of the plant and system will not have an adverse impact on the gopher tortoise population on the island. Rather, the system should enhance the gopher tortoise population by providing mananged land with vegetation suitable for gopher consumption. Further, the general development on the island will reduce the number of raccoons which prey on gopher eggs and young gophers. Miscellaneous During the remand hearing, FAS presented evidence concerning the impact of tides and mean sea level rise and saline lakes on the island. This evidence was essentially the same as that presented in the prior hearing and was rejected in favor of the more credible evidence presented by the applicants on this issue. Nothing was presented during the remand hearing which would alter these prior findings. During the hearing, and in response to a question by District counsel, witness Missimer agreed it would not be unreasonable to install a few monitoring wells to insure that the system is operating properly. Because this requirement is not unreasonable, will serve a valuable purpose, and has been utilized by the District as a special condition on numerous prior occasions, it should be incorporated into the permit conditions. Even though the evidence clearly shows that seasonal tidal fluctuations would not have an adverse impact on the functioning of the system, if such a tidal incursion were to occur, the placement of a check valve device on the water control structures would prevent sea water from flowing back into the system. Such a device would be a minor addition to the system, would not otherwise affect its design, and if deemed necessary by the District, should be incorporated into the permit conditions. Prior to hearing, the District retained the services of an outside consultant to assist it in preparation for trial. The consultant did not testify at final hearing and prepared no reports. He did make several computer runs, none of which are a part of this record. Among other things, District witness Rogers relied upon the computer runs in formulating his opinion on the issue presented on remand.
Recommendation Based on the foregoing findings of fact and conclusions of law, it is RECOMMENDED that a final order be entered granting the requested permit in accordance with the agency's proposed agency action dated March 28, 1990. DONE and ENTERED this 22 day of March, 1991, in Tallahassee, Florida. DONALD R. ALEXANDER Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 22 day of March, 1991.
Findings Of Fact Joyce K. Anderson and Thomas Barnett have filed an application for issuance of a permit to dredge and fill a small area in the littoral, or "near shore," zone of Gillis Pond, a "sandhill lake" lying in what is known as the "sandhill region" of Central Florida, generally northeast of Gainesville. The dredging and filling as now proposed would be on and waterward of two lakefront lots jointly owed by the permit applicants. They seek by their application, authorization to dredge and fill at only one site on the waterward margin of the two lots with that modified project area reduced in size to a dimension of 12 feet by 25 feet. Fifteen feet of the project would be waterward of the shoreline. The Respondent, the Department of Environmental Regulation, is an agency of the State of Florida charged with the duty of enforcing, as pertinent hereto, the provisions of Chapter 403, Florida Statutes, and Chapter 17-3 and 4, Florida Administrative Code, enforcing the water quality standards contained therein as they relate to dredge and fill projects of this sort, with concomitant permitting jurisdiction over such projects. The permit applicants desire this dredge and fill permit in order to make a safe, comfortable swimming area for Mrs. Anderson's family and friends. Mrs. Anderson desires to remove the tree stumps, roots and vegetation existing in the littoral zone area of the above dimensions in order to make access directly from the shore more comfortable and pleasant, especially for small children who are unable to swim in the deep water off the waterward end of the existing dock. Mrs. Anderson already has a 56 foot dock extending from her property into the lake. The water is 7 feet deep at the waterward end of the dock and the littoral zone containing aquatic vegetation extends beyond the length of the dock in a waterward direction. The project area would extend waterward of the shoreline, a distance of 15 feet, and would parallel the shoreline approximately a distance of 12 feet. The littoral zone vegetation at the site, however, extends waterward from the shoreline 50 to 60 feet. The proposed area to be dredged is quite small in size in relation to the total linear shoreline of the subject lake of approximately 4,000 feet. The dredged material would be excavated to a depth of approximately 6 inches over that 12 by 15 foot area and replaced with clean sand fill. The dredged material removed from the site would be secured on an upland site such that nutrient pollutants from that dredged material could not be leached or carried back into the lake through storm water runoff. Approximately one-third of the shoreline of the lake is bordered by a marsh or wet prairie which is approximately as large in area as the lake itself. The dominant vegetative species in the project area and surrounding the lake, including the marsh, are submerged freshwater species listed in Rule 17- 4.02(17), Florida Administrative Code, including maidencane, sawgrass and a rare aquatic plant, websteria confervodies. Gillis Pond is a Class III water of the state, although its water quality parameters, or some of them, clearly exceed in quality, the minimum standards for Class III waters. Gillis Pond is what is termed an "ultra- oligotrophic lake, which means that its waters are characterized by a high level of transparency and very low nutrient content, that is to say that they are essentially pristine in nature. An oligotrophic lake such as this is very sensitive to any addition of nutrient pollutants. Even a small addition of nutrients to such water can cause an imbalance in the fauna and flora which have evolved to become dependent upon a low nutrient aquatic environment. Specifically, the rare aquatic plant named above is very sensitive to any enhanced nutrient levels and thus serves as a barometer of the water quality in this body of water. The addition of any nutrient pollutants to the lake, even in small amounts, might alter the chemical balance of the water in a derogatory manner so that the websteria confervodies might be eliminated. The elimination of this species from the littoral zone vegetation band surrounding the lake would likely result in other forms of vegetation supplanting it, altering the balance and makeup of the community of fauna and flora native to the lake and possibly hastening the progress of the lake toward eutrophication and degradation. The present water quality in the lake is such that dissolved oxygen and other criteria are better than the Class III water quality standards. The vegetation in the littoral zone of the lake and extending out as much as 50 to 60 feet waterward performs a significant function in uptaking and fixing nutrient pollutants that wash into the lake from storm water runoff from the surrounding uplands. Inasmuch as 30 to 40 feet of this belt of littoral zone vegetation would remain waterward of the dredged and filled area if the permit is granted, the nutrient uptake function of the vegetation in the littoral zone would not be significantly degraded. There are two locations where littoral zone vegetation has been removed in a similar fashion and water quality and flora and fauna communities characteristic of an oligotrophic lake are still present and healthy. Further, there is an extremely low nutrient level in the lake at the present time, and no significant amount of nutrient pollutants are leached or washed into the lake through septic tanks, storm water runoff or other sources. There is no question that the project as proposed would result in some slight, transitory degradation of water quality in the form of increased turbidity and reduced transparency. Turbidity will be caused during and shortly after the dredging and filling operation itself, caused by stirring up of bottom peat or sediments and by removal of a 12 by 15 foot area of aquatic vegetation in the littoral zone of the lake. Turbidity curtains in still waters such as involved here, can substantially reduce the spread of turbidity caused by the stirring up of bottom material and can substantially reduce the period of its suspension in the water by containing it at the dredged site. The vast majority of the littoral zone vegetation surrounding and waterward of the area to be dredged will remain such that the nutrient uptake function will be essentially undisturbed, thus any adverse impact on water quality will be insignificant. In terms of cumulative effect of allowing a multiplicity of such projects, not even a 10 percent loss of the littoral zone band of vegetation in the lake, which would be the maximum possible loss if all riparian land owners were allowed a similar size dredged and filled area on the front of their lots, would cause a violation of Department water quality standards. Parenthetically, it should be pointed out that such riparian owners cannot be prevented by any water quality criteria in Chapter 403 or Chapter 17, Florida Administrative Code, from having access to the lake in front of their lots. Such human traffic will have the gradual affect of destroying a significant amount of the littoral zone vegetation on and waterward of those lots (which is a cause and result the Department is powerless to regulate). By confining the destruction of littoral zone vegetation to such a small area as that involved in the application at bar and thus guaranteeing adequate, comfortable access for the riparian owner, the survivability of the remaining critical littoral zone vegetation will be significantly enhanced.
Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence in the record and the candor and demeanor of the witnesses, it is, therefore RECOMMENDED: That the application of Joyce K. Anderson and Thomas Barnett for a dredge and fill permit as described in the modified and amended application be GRANTED; provided, however, that turbidity curtains are used during all dredging and filling activity and for a reasonable time thereafter until turbidity caused by the project has settled out of the water column. DONE and ENTERED this 26th day of September, 1983, in Tallahassee, Florida. P. MICHAEL RUFF, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 26th day of September, 1983. COPIES FURNISHED: Tim Keyser, Esquire Post Office Box 92 Interlachen, Florida 32048 Dennis R. Erdley, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Joyce K. Anderson and Thomas Barnett 6216-B, Southwest 11th Place Gainesville, Florida 32601 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301
The Issue The issues presented in this matter concern the request by the Petitioner to be granted a management and storage of surface waters permit by Respondent. Respondent proposes to deny the permit based upon the perception that the activities contemplated by Petitioner: (1) are not consistent with the public interest as envisioned by Section 373.016, Florida Statutes, and 40C- 4.301(1)(b), Florida Administrative Code, (2) are not a reasonable and beneficial activity, per Section 40C-4.301(1)(a), Florida Administrative Code, alter the peak discharge rate of runoff from the proposed activity or the downstream peak stage or duration for the 1 in 10 year design storm, per Section 40C-4.301(3)(a), Florida Administrative Code, (4) cause an increase in velocity or flood stage on lands other than those owned, leased, or otherwise controlled by the applicant for the design storm, per Section 40C-4.301(3)(b), Florida Administrative Code, (5) cause an increase in flow or stage such that it would adversely affect lands other than those owned, leased, or otherwise controlled by the applicant, per Section 40C-4.301(3)(c), Florida Administrative Code. 1/
Findings Of Fact A predecessor applicant had requested permission to construct and operate the water management system which is the subject of this controversy. The approximate acreage involved was 197 acres in Lake County, Florida. This acreage and requested activity was subject to the regulatory requirements of St. Johns River Water Management District. Clay Island Farms, Inc., hereinafter referred to as CIF, was substituted for the initial applicant and this matter has been litigated before the Division of Administrative Hearings on the continuing application of the Petitioner. The permit application number is 4- 8089. This application was considered with application number 4-8088, pertaining to property owned by A. Duda and Sons, Inc. Subsequently, the latter application shall be referred to as the Duda request for permit. Certain additional information was sought by Respondent from the applicants, CIF and Duda, in the permit review, by correspondence dated October 2, 1981. A copy of that correspondence may be found as Petitioner's Exhibit No. 16 admitted into evidence. In particular, CIF was requested to prepare pre and post-development runoff rates in the 1 in 10, 1 in 25,and 1 in 100-year storms, to include stage-storage and stage-discharge rates for any and all retention facilities within the project design. Petitioner's Composite Exhibit No. 1 admitted into evidence contains a copy of the engineering report by CIF which are CIF's responses to the request for information. The date of the engineering report is July 12, 1982. The CIF application, as originally envisioned, called for the construction of exterior and interior ditches to be placed around a dike of 71 feet MSL elevation. The dike would enclose a proposed farm operation of approximately 197 acres, should the permit be granted. Within that 197 acre plot, would be found numerous drainage ditches to include major ditches and minor arterial ditches. The purpose of those ditches found in the 197 acres would be to serve as a conveyance for rainfall runoff. The system of conveyance would be connected to an existing conveyance system already in place and related to farm operations of A. Duda and Sons. The runoff would be eventually placed in a retention pond and at times discharged from that retention pond or basin into Lake Apopka by means of gravity flow. The particulars of the development of the 197 acre plot and its service dike, canals, and ditches are more completely described in Petitioner's Exhibit No. 1, which is the engineering report for the surface water management permit application. The CIF application was reviewed by the staff of the Respondent. Recommendation was made to deny the permit. Details of that denial may be found in Respondent's Exhibit No. 1. In the face of the denial, CIF requested an administrative hearing. This request was made on August 27, 1982, by petition for formal Subsection 120.57(1), Florida Statutes, hearing to determine Petitioner's entitlement to the requested permit. St. Johns River Water Management District, in the person of its governing board, determined to refer this matter to the Division of Administrative Hearings to conduct the formal proceeding and the request for the assignment of a hearing officer was received by the Division on September 13, 1982, leading to the final hearing in this cause. During the course of the final hearing, the CIF permit application was modified in a fashion which reduced the amount of acreage sought for cultivation. Now, approximately 122 acres would be farmed per the amended proposal. A general depiction of the design of the project in its amended form may be found in the engineer's sheet, which is Petitioner's Exhibit No. 20 admitted into evidence. When contrasted with the engineering drawings set out in Petitioner's Composite Exhibit No. 1, the new design is essentially the same as contemplated in the original permit application, on a lesser scale. Other than dimensions, the basic concepts of the CIF operation would remain the same under the amended proposal. At present, Petitioner proposes to remove the vegetation which covers the subject 122 acre plot and to conduct a muck farming operation. That vegetation is mostly mixed hardwood with the primary species being red maple. The soil in this area is constituted of monteverde muck, which is conducive to the production of corn and carrots, the crops which Petitioner would plant, to prepare the land for the operation, the system of ditches dikes and canals described would be installed following the cleaning, draining, and leveling of the 122 acres. Petitioner's Exhibit No. 10 admitted into evidence depicts land which has been cultivated and the subject 122 acres in its undisturbed state. Petitioner's Exhibit No. 4 admitted into evidence shows the overall CIF area is outlined in red, except for its southerly extent, which carries a red and yellow line on the exhibit. This exhibit depicts Wolfshead Lake which is a small interior lake in the southeastern corner of the overall CIF property. The yellow line in the middle of the CIF property represents, the location of a former north-south canal. The westernmost north-south reach, which is shown with a red line, depicts a canal which runs north from Wolfshead Lake into the existing Duda system of canals and ditches. The Duda operation has attempted to plug that north-south canal on the western fringe to stop the flow from the area of Wolfshead Lake, but has been unsuccessful and the water still enters the Duda farm ditches and canals. In the 1940's and early 1950's, the CIF property had been partially developed for a cattle operation and truck farming. Those canals, as described before, were installed, together with the diagonal yellow line on Petitioner's Exhibit 4, which represents a canal that was built with an axis running northeast and southwest. In addition, there was a centrally placed east-west canal and a slough running from Wolfshead Lake in a southeasterly direction. The slough is still there, although water that might be diverted from the Wolfshead Lake area into the slough is flowing north in the westerly north-south canal at present. If the project were allowed, most of the water flowing in and around the Wolfshead Lake would be introduced into the slough and from there exit to Lake Apopka. The center north-south canal and the interior east-west canal, together with the diagonal canal, are not in operation at present. The center north-south-canal would become the approximate eastern boundary of the 122 acres with the western north-south canal representing the approximate western boundary of the 122 acre plot. The northern boundary of the CIF property is constituted of an east-west canal which is part of the present Duda system. This is the only one of the canals associated with the former farming operation on the CIF property which is part of any maintained system of conveyances presently in existence. Approximately 1,000 acres are being farmed by Duda and Sons in property north of the proposed project. The Duda permit application, 4-8088 as granted, is described in Petitioner's Exhibit No. 13 which is a copy of the permit. This acreage is generally found to the northwest of the CIF plot, and would allow an additional 300 acres to be farmed in that muck area, on land which has been cleared for the most part and/or which has an elevation predominantly above 68.5 feet MSL. Eighty acres of the proposed Duda permit application was denied based upon the fact that it had not been cleared prior to the Duda permit application and in consideration of the amount of the 80 acre segment which lies below 68.5 feet MSL. The elevation 68.5 feet MSL represents the flood plain for the 1 in 10 year rainfall event for Lake Apopka. The area of the Duda permit is depicted on Petitioner's Exhibit No. 4 and outlined on that exhibit with lines of green and yellow at the southern end, green and yellow and red and yellow on its western flanks, red at the north end and by red on the east side, together with a Duda drainage ditch, which runs north from the terminus of the north-south drainage ditch coming from Wolfshead Lake and the east-west drainage ditch at the northern extent of the CIF property. Exhibit No. 4 was made prior to clearing operations depicted in Petitioner's Exhibit No. 10 and that letter exhibit is a more correct indication of the appearance of the new Duda permit property today. A green diagonal line running northwest and southeast intersecting with a line running east-west and a line running north-south depicts the approximate part of the 80 acres, which lies below 68.5 feet MSL, as shown in Petitioner's Exhibit No. 4. Farm operations, in keeping with the authority of Permit No. 4-8088, have not commenced. If the CIF permit application is successful, the original 1,000 acres, approximately 300 acre area of the Duda permit and the 122 acres of CIF, would be tied in by a system of conveyance ditches or canals allowing the interchange and transport of water through and around the three farm areas. The existing retention pond would be expanded to accommodate the additional farm acreage. The Petitioner is willing to increase the present retention pond to a design capacity which would equal one acre of basin for each ten acres of farm land, at the place in time when all three elements of the muck farm operation were under way. This again pertains to the existing 1,000 acres, the approximately 300 acre recent Duda permit, and the 122 acres related to the CIF application. With the addition of the CIF acreage, when water in the ditches reached 67.1 feet MSL, this would cause the engagement of a 40,000 GPM pump allowing the ditch water influent into the retention pond. The pump automatically would shut off at any time the water level in the access ditches to the pond dropped below 61 feet MSL. The primary purpose of the retention pond is to make water available for irrigation of crops, in its present state, and as contemplated with the addition of the CIF project. The pond does and would detain farm water for a period of about a day allowing the settling out of certain nutrients which are in particulate form. The existing pond and in its expanded form does not and would not filter nutrients which have been dissolved and have become a part of the water column. At times of high incidence of rainfall, when the crops are inundated with water for a 48-hour period of time, the retention pond is now designed and as contemplated by the addition of the CIF farm land, would allow for the discharge of effluent into Lake Apopka through two discharge culverts. The discharge is by means of gravity through an adjustable riser system. The retention pond as presently designed and as contemplated in its expansion has established the height at which water would be released from the retention pond into Lake Apopka through the riser at 68 feet MSL. The occasion of high incidence of rainfall occurs during the normal rainy season in a given year. Discharge could also be expected in the 1 in 10 year, 24hour storm event. During that storm event or design, Lake Apopka would rise to a level of 68.54 feet MSL, a level which would correspond to the 10year flood plain. Whether in the pre or post-development phase of the 122 acres, waters from that acreage would be discharged during the course of the storm through culverts leading from the retention pond into Lake Apopka. This process would continue until the gravity flow stopped at the moment where the water level in the pond and the water level in Lake Apopka adjacent to the discharge culverts achieved equilibrium of elevation. At that point in time, the gravity flow or discharge from the retention basin would cease, there no longer being a positive gradient from the detention pond to Lake Apopka. There will be some amount of discharge in the 24-hour storm event through the culverts at the retention pond either in the pre or post-development phases of the project, because, at present, the western most north-south ditch, which is found at the western boundary of the CIF property, allows water to flow north into the present Duda ditch system, water which has fallen on the 122 acres in question. From the ditch system, that water finds its way into the retention pond and thus into the lake. The contemplated system to be installed with the 122 acres at build-out would also allow water from the 122 acres to go through a system of conveyances and to the retention pond and from there into Lake Apopka. Although considerable testimony was presented by both parties on the subject of comparing pre-development and post-development peak discharge rates of runoff from the proposed activity, in the 1 in 10 year, 24-hour storm design or event, neither party has satisfactorily proven the dimensions of the pre-development and post-development peak discharge rates of runoff from the proposed activity. This determination is made having reviewed the testimony and the exhibits in support of that testimony. Notwithstanding a lack of proof of this differential with exactitude, it has been shown by the testimony and exhibits that the post- development peak discharge rate of runoff in the 1 in 10 year, 24-hour design storm or event can be expected to exceed that of the pre-development rate. On the associated topic of the ability of the post-development design to accommodate the differential in peak discharge rate of runoff between pre- development and post-development, Petitioner has failed to establish this proof. The modeling that was done by the Petitioner, in an effort to depict the differential as 10 acre feet with an available capacity of attenuation approximating 26 acre feet within the system of ditches, is not convincing. Nor has petitioner shown that there is sufficient storage in the retention pond, in the course of the storm event. The data offered in support of Petitioner's position does not sufficiently address accommodation of the drainage from areas surrounding the 122 acres in question, which are not part of the Duda system; the amounts of water already found in the system of ditches and canals at the onset of the storm event; the amount of water located on the crops at the onset of the storm event, which would have to be removed; and the amount of water already found in the retention pond at the time of the storm event. During the 1 in 10 year 24-hour storm, the CIF 122 acres will be protected by the 71-foot MSL dike, in that the expected elevation of Lake Apopka would not exceed 68.54 feet MSL. The dike would also protect the 122 acres in the 25, 50, and 100-year, 24-hour storm events whose elevations are anticipated to be 68.98, 69.28, and 69.56 feet MSL, respectively. As a consequence, an increase in flood stage would occur on lands other than those controlled by CIF. The amount of increase in flood stage would be approximately .046 inches during the 1 in 10 year storm, and an increasingly greater amount for the larger storms. It was not established where the amount of water which could not be staged on the 122 acres would be brought to bear through the surface flow on the 31,000 acres of water which constitute Lake Apopka. Nonetheless, that water could be expected to increase the flood stage on lands other than those of the Applicant. Possibly the dikes protecting the muck farms on the northern side of Lake Apopka could be influenced by the .046 inches in elevation due to the forces associated with the 1 in 10 year storm event, such as winds and movement of the water in the lake. This is true, notwithstanding the fact that the design goal of the dikes in the area is 71 feet MSL. The dikes are constituted of muck and are susceptible to overtopping, erosion, or blowout. By history, there have bean dike failures in the northern end of Lake Apopka, and associated increases in stage or flood stage. This incremental increase in water level in the 1 in 10 year storm event, due to the CIF development, when considered in the context with the other influences of that storm event, could possibly be the determining incident leading to dike failure in the northern perimeter of Lake Apopka. However, given the history of dike failures, prior to this potential loss of the storage area on the applicant's property, it has not been shown that the proximate cause of dike failure in the 1 in 10 year storm could be expected to be the contribution of an additional .046 inches of water on the lake surface. Those failures existed prior to the potential for the addition of water and were the result of inadequate maintenance of a structure which demanded a better quality of attention. Nonetheless, the additional amount of water could be expected to exacerbate the extent of a dike breach in any 1 in 10 year storm event that occurred subsequent to the development of the CIF 122 acres. In summary, the likelihood that the increase in elevation of water caused by the loss of storage on the subject property will be the critical event that causes a dike failure is not accepted. A dike could breach because of the influence of the storm even itself, without regard for the incremental increases in water elevation due to loss of water storage on the CIF property. The poor condition of some dikes due to less than adequate design or maintenance, would promote that dike failure and be exacerbated to the extent of more water being introduced on that property through the incremental amount of increase due to loss of storage on the CIF property. The dike failure circumstance in and of itself would not be sufficient to deny the permit application; however, the applicant had the burden of addressing the possible problem of increases in stage or flood stage on other properties, not its own, which are not protected by dikes. This showing was not made by the applicant, notwithstanding the fact that an increase in stage or flood stage could be expected to occur on property fronting Lake Apopka, which property is not protected by any form of artificial barrier. The installation of the protective dike aground the 122 areas of the CIF property in the 1 in 10 year design storm and potentially at times of lesser rainfall events, could be expected to increase the stage or flood stage on lands unprotected by dikes and thereby adversely affect lands other than those controlled by the applicant. Most of the 122 acres and the property to the east of that development and a portion of the undeveloped 80 acres in the recent Duda permit would be inundated in the 1 in 10 year storm event, prior to development. This is true because the elevation of much of that property is approximately 67.5 foot MSL. During the 1 in 10 year storm event, it would store approximately one foot of water, as presently constituted. It could also be expected to be inundated on an average of approximately once in two years. Lake Apopka is a part of a controlled system of lakes known as the Oklawaha River chain of lakes. Respondent regulates the water level in that chain of lakes by operation of a lock on the Apopka-Beauclair canal. The maximum desirable elevation of 67.5 feet MSL for Lake Apopka is a part of the regulation schedule found in Respondent's Exhibit No. 2 admitted into evidence. In the 1 in 10 year or better storm event, the Apopka-Beauclair system could not draw down the surface water at a rate faster than 27 days per foot, even assuming the lock was fully open to flow. Consequently, those properties that were suffering an, increase in flood stage on their surface could not expect to gain prompt relief through the regulation of waters in the Oklawaha River chain of lakes. Lake Apopka is an hyper-eutrophic lake. Although it is classified as Class III water body (ambient water quality) within the meaning of Section 17- 3.161, Florida Administrative Code, it fails to match that classification in terms of its actual water quality. This is as a consequence of its highly eutrophic state, brought about by the age of the lake and the contributions of man. Some of the contributors to the eutrophication have been removed from the lake area and water quality has improved. Those facilities removed were sewage treatment and citrus processing plants around the Lake Apopka rim. The muck farms remain and the quality of the water in the retention basins or ponds when compared to the receiving waters of Lake Apopka is similar in nature. Consequently, the receiving waters are not enhanced in their water quality when the retention ponds discharge water into Lake Apopka. As stated before, the retention ponds do not have as their primary purpose the treatment of water. Any water quality improvement is a secondary function of the retention pond. The retention ponds do improve the water somewhat, as described, and are adequately sized to fulfill that partial cleansing. Whether the water quality in Lake Apopka would ever improve sufficiently to allow Lake Apopka to become a more diversified habitat for fish and wildlife is not certain, even if all contributing discharges of pollutants were curtailed, to include the discharge of water from the muck farms with its high nutrient loads. Nonetheless, Lake Apopka cannot accomplish the recovery if the effluent from the muck farms continues to be introduced into the lake with the present constituents found in the water. Out of concern for the water quality in Lake Apopka, officials of the University of Florida have conducted experiments on nutrient removal which they hoped would approximate the quality of removal accomplished by transitional vegetation and swamp. (The 122 acres at issue and the western and eastern adjoining property are constituted of these water treatment zones.) This experiment of nutrient removal through use of retention ponds calls for the retention of the muck farm water for a period of six days allowing settlement of particulates and for the vegetation within those experimental retention basins to uptake dissolved nutrients. Several types of vegetation are used to gain a better quality of nutrient uptake add the vegetation is harvested every six to eight weeks to improve that performance. The experiment has shown that the quality of water discharged from the ponds utilized by the University of Florida was comparable in its quality to the natural wetlands system water discharge. The natural wetlands discharge is of a better quality than the receiving waters. Unlike the university experiment, the pond contemplated by CIF primarily emphasizes detention for a shorter period of time than was used in the experiment and allows highly eutrophic water to be mixed with that quality of water already found in Lake Apopka. The only exception to that comment is that water flowing from Wolfshead Lake, which is south of the proposed 122 acres, is a high quality of water, and through the project as contemplated, this water would be directly introduced into Lake Apopka through a flow over a natural wetlands system. This is in opposition to the present situation where the water from Wolfshead Lake flows primarily to the north through an existing canal and is mixed with water from the muck farm and is, therefore, of the eutrophic character as opposed to the high quality character. The Duda permit, which was issued, would allow the introduction of water which is similar in character to the water of Lake Apopka, through the system of ditch conveyances, placement in the retention pond, and at times, flow to the lake. In its effect, the nutrient loading which occurs by introduction of waters from that new farm, would be similar to that proposed in the CIF project. The fact of this similarity does not prohibit the district from evaluating water quality matters on the occasion of the CIF permit decision. Should the 122 acres be converted from natural vegetation to a muck farm, wildlife and fish habitat would be adversely impacted. The habitat provided by the plot is in scarce supply and is essential to the maintenance of a diversified fish population. The hardwood swamp, which is part of and adjacent to the 122 acres of the CIF application, supports benthic invertebrates, which are a food source for game fish. The type of vegetation found in the lake, due to its eutrophic state, is plankton and one of the by- products of the reproduction of that plant through the process and respiration is the destruction of the fish population. This occurs in the summer months. The plankton has replaced the emergent and submergent vegetation which once covered as much as two-thirds of Lake Apopka and now represents .05 percent of the lake. As a consequence, game fish have diminished over a period of years with plankton feeding fish predominating. Consequently, the fish population is less diverse and the removal of the vegetation becomes a significant contributor to the imbalance in fish population.
The Issue The issues to be resolved in this proceedings concern whether Environmental Resource Permit (ERP) No. 4-109-0216-ERP, should be modified to allow construction and operation of a surface water management system (project) related to the construction and operation of single-family homes on "Marshall Creek" (Parcel D) in a manner consistent with the standards for issuance of an ERP in accordance with Rules 40C-4.301 and 40C-4.302, Florida Administrative Code.
Findings Of Fact The Project The project is a 29.9-acre residential development and associated stormwater system in a wetland mitigation area known as "Parcel D." It lies within the much larger Marshall Creek DRI in St. Johns County, Florida, bounded on the northeast by Marshall Creek, on the south and southeast by a previously permitted golf course holes sixteen and seventeen, and on the north by the "Loop Road." The project consists of thirty residential lots of approximately one-half acre in size; a short segment of Loop Road to access Parcel D; an internal road system; expansion of previously permitted Pond N, a wet detention stormwater management pond lying north of the Loop Road and wetland mitigation areas. Approximately 1.15 acres of wetlands are located on the Parcel D site. The project plan calls for filling 0.63 acres of the wetlands for purposes of constructing a road and residential lots for Parcel D. Part of that 0.63-acre impact area, 0.11 acres, is comprised of a 760-foot-long, narrow drainageway, with 0.52 acres of adjacent wetland. Downstream of the fill area, 0.52 acres of higher quality wetland is to be preserved. Hines proposes to preserve 4.5 acres of existing wetland and 2.49 acres of upland, as well as to create .82 acres of forested wetland as mitigation for the proposed impact of the project. Additionally, as part of the project, Hines will implement a nutrient and pesticide management plan. The only pesticides to be used at the project will be approved by the Department of Agriculture for use with soil types prevailing at the site and only pesticides approved by the Environmental Protection Agency may be used on the site. All pesticides to be used on the project site must be selected to minimize impacts to ground and surface water, including having a maximum 70-day half-life. Stormwater Management System The majority of surface runoff from Parcel D will be diverted to a stormwater collection system and thence through drainage pipes and a swale into Phase I of Pond N. After treatment in Pond N, the water will discharge to an upland area adjacent to wetlands associated with Marshall Creek and then flow into Marshall Creek. The system will discharge to Marshall Creek. In addition to the area served by Pond N, a portion of lots fourteen though twenty drain through a vegetated, natural buffer zone and ultimately through the soil into Marshall Creek. Water quality treatment for that stormwater runoff will be achieved by percolating water into the ground and allowing natural soil treatment. The fifty-foot, vegetated, natural buffer is adequate to treat the stormwater runoff to water quality standards for Lots 14, 15 and 20. Lots 16, 17, 18 and 19, will have only a twenty-five foot buffer, so additional measures must be adopted for those lots to require either that the owners of them direct all runoff from the roofs and driveways of houses to be constructed on those lots to the collection system for Pond N or placement of an additional twenty-five foot barrier of xeriscape plants, with all non- vegetated areas being mulched, with no pesticide or fertilizer use. An additional mandatory permit condition, specifying that either of these measures must be employed for Lots 16, 17, 18 and 19, is necessary to ensure that water quality standards will be met. Pond N is a wet detention-type stormwater pond. Wet detention systems function similarly to natural lakes and are permanently wet, with a depth of six to twelve feet. When stormwater enters a wet detention pond it mixes with existing water and physical, chemical and biological processes work to remove the pollutants from the stormwater. Pond N is designed for a twenty-five year, twenty-four- hour storm event (design storm). The pre-development peak rate of discharge from the Pond N drainage area for the design storm event is forty cubic feet per second. The post-development peak rate of discharge for the design storm event will be approximately twenty-eight cubic feet per second. The discharge rate for the less severe, "mean annual storm" would be approximately eleven cubic feet per second, pre-development peak rate and the post-development peak rate of discharge would be approximately five cubic feet per second. Consequently, the post-development peak rate of discharge does not exceed the pre- development peak rate of discharge. Pond N is designed to meet the engineering requirements of Rule 40C-42.026(4), Florida Administrative Code. Because the pond is not designed with a littoral zone, the permanent pool volume has been increased by fifty-percent. Additionally, because Pond N discharges to the Class II waters of Marshall Creek, an additional fifty-percent of treatment volume is included in the pond design. The system design addresses surface water velocity and erosion issues through incorporation of best management practices promulgated by the District to prevent erosion and sedimentation, including; designing side slopes of 4:1; siding and seeding disturbed areas to stabilize soil; and the use of riprap at the outfall from Pond N. During construction, short- term water quality impacts will be addressed through installation of silt fences and hay bales. The majority of the eighteen-acre drainage basin which flows into the Parcel D wetland lies to the south and southwest of Parcel D. In accordance with the prior permit, water from those off-site acres will be intercepted and routed to stormwater ponds serving golf course holes sixteen and seventeen. The system design will prevent adverse impacts to the hydroperiod of remaining on-site and off-site wetlands. The remaining wetlands will be hydrated through groundwater flow. Surface waters will continue to flow to the wetlands adjacent to lots fourteen through twenty because drainage from those lots will be directed across a vegetated, natural buffer to those wetlands. There is no diversion of water from the natural drainage basin, because Pond N discharges to a wetland adjacent to Marshall Creek, slightly upstream from the current discharge point for the wetland which is to be impacted. This ensures that Marshall Creek will continue to receive that fresh-water source. An underground "PVC cut-off wall" will be installed around Pond N to ensure that the pond will not draw down the water table below the wetlands near the pond. Pond N has been designed to treat stormwater prior to discharge, in part to remove turbidity and sedimentation. This means that discharge from the pond will not carry sediment and that the system will not result in shoaling. There will be no septic tanks in the project. The system is a gravity flow system with no mechanical or moving parts. It will be constructed in accordance with standard industry materials readily available and there will be nothing extraordinary about its design or operation. The system is capable of being effectively operated and maintained and the owner of the system will be the Marshall Creek Community Development District (CDD). Water Quality Water entering Pond N will have a residence time of approximately 200 days or about fifteen times higher than the design criteria listed in the below-cited rule. During that time, the treatment and removal process described herein will occur, removing most of the pollutants. Discharge from the pond will enter Marshall Creek, a Class II water body. The discharges must therefore meet Class II water quality numerical and anti-degradation standards. The design for the pond complies with the design criteria for wet detention systems listed in Rule 40C-42.026(4), Florida Administrative Code. In addition to meeting applicable design criteria, the potential discharge will meet water quality standards. The pond will have low levels of nitrogen and phosphorous resulting in low algae production in the pond. The long residence time of the water in the pond will provide an adequate amount of time for pesticides to volatilize or degrade, minimizing the potential for pesticide discharge. Due to the clear characteristics of the water column, neither thermal stratification nor chemical stratification are expected. Periodically, fecal coliform and total coliform levels are exceeded under current, pre-development conditions. These are common natural background conditions. Because the detention time in the pond will be an average of 200 days, and because the life span of fecal coliform bacteria is approximately seven to fourteen days the levels for coliforms in the pond will be very low. Discharges from the pond will enhance water quality of the Class II receiving waters because the levels of fecal coliform and total coliform will be reduced. The discharge will be characterized by approximately 100 micrograms per liter total nitrogen, compared with a background of 250 micrograms per liter presently existing in the receiving waters of Marshall Creek. The discharge will contain approximately three micrograms per liter of phosphorous, compared with sixty-three micrograms per liter presently existing in Marshall Creek. Total suspended solids in the discharge will be less than one-milligram per liter compared with seventy-two milligrams per liter in the present waters of Marshall Creek. Biochemical oxygen demand will be approximately a 0.3 level in the discharge, compared with a level of 2.4 in Marshall Creek. Consequently, the water quality discharging from the pond will be of better quality than the water in Marshall Creek or the water discharging from the wetland today. The pollutant loading in the discharge from the stormwater management system will have water quality values several times lower than pre-development discharges from the same site. Comparison of pre-development and post-development mass loadings of pollutants demonstrates that post-development discharges will be substantially lower than pre-development discharges. Currently, Marshall Creek periodically does not meet Class II water quality standards for dissolved oxygen. Construction and operation of the project will improve water quality in the creek concerning dissolved oxygen values because discharges from Pond N will be subjected to additional aeration. This results from design features such as discharge from the surface of the system, where the highest level of dissolved oxygen exists, and the discharge water draining through an orifice and then free falling to a stormwater structure, providing additional aeration. Discharges from the system will maintain existing uses of the Class II waters of Marshall Creek because there will be no degradation of water quality. Discharges will not cause new violations or contribute to existing violations because the discharge from the system will contain less pollutant loading for coliform and will be at a higher quality or value for dissolved oxygen. Discharges from the system as to water quality will not adversely affect marine fisheries or marine productivity because the water will be clear so there will be no potential for thermal stratification; the post-development discharges will remain freshwater so there will be no change to the salinity regime; and the gradual pre-development discharges will be replicated in post-development discharges. Several factors minimize potential for discharge of pesticide related pollutants: (1) only EPA-approved pesticides can be used; (2) only pesticides approved for site-specific soils can be used; (3) pesticides must be selected so as to minimize impacts on surface and groundwater; (4) pesticides must have a maximum half-life of 70 days; and (5) the system design will maximize such pollutant removal. Archaeological Resources The applicant conducted an archaeological resource assessment of the project and area. This was intended to locate and define the boundaries of any historical or archaeological sites and to assess any site, if such exists, as to its potential eligibility for listing in the National Register of Historic Places (National Register). Only a portion of one archaeological site was located on the project tract. Site 8SJ3473, according to witness Anne Stokes, an expert in the field of archaeological assessment, contains trace artifacts dating to the so-called "Orange Period," a time horizon for human archaeological pre-history in Florida dating to approximately 2,300 B.C. The site may have been only a small campsite, however, since only five pottery fragments and two chert flakes, residuals from tool-making were found. Moreover, there is little possibility that the site would add to knowledge concerning the Orange Period or pre-history because it is a very common type of site for northeast Florida and is not an extensive village site. There are likely other campsites around and very few artifacts were found. No artifacts were found which would associate the site with historic events or persons. The applicant provided the findings of its cultural resource assessment, made by Dr. Stokes, to the Florida Division of Historical Resources. That agency is charged with the responsibility of reviewing cultural resource assessments to determine if significant historic or archaeological resources will be impacted. The division reviewed the survey techniques used by Dr. Stokes, including shovel testing, sub-surface testing and pedestrian walk-over and investigation. The division determined that the site in question is not of a significant historical or archaeological nature as a resource because it does not meet any of the four criteria for inclusion in the National Register.1 Thus the referenced agency determined that the site in question is not a significant historical or archaeological resource and that construction may proceed in that area without further investigation, insofar as its regulatory jurisdiction is concerned. Wetlands The wetlands to be impacted by the project consist of a 1,000 foot drainage-way made up of a 0.11 acre open-water channel, approximately four feet wide, and an adjacent vegetated wetland area of approximately 0.52 acres containing fewer than 30 trees. The open-water channel is intermittent in that it flows during periods of heavy rainfall and recedes to a series of small, standing pools of water during drier periods. The Parcel D wetland is hydrologically connected to Marshall Creek, although its ephemeral nature means that the connection does not always flow. The wetland at times consists only of isolated pools that do not connect it to Marshall Creek. Although it provides detrital material export, that function is negligible because the productivity of the adjacent marsh is so much greater than that of the wetland with its very small drainage area. Because of the intermittent flow in the wetland, base flow maintenance and nursery habitat functions are not attributed to the wetland. The Parcel D wetland is not unique. The predominant tree species and the small amount of vegetated wetland are water oak and swamp bay. Faunal utilization of the wetland is negligible. The wetland drainage-way functions like a ditch because it lacks the typical characteristics of a creek, such as a swampy, hardwood floodplain headwater system that channelizes and contains adjacent hardwood floodplains. The location of the wetland is an area designated by the St. Johns County comprehensive plan as a development parcel. The Florida Natural Areas Inventories maps indicate that the wetland is not within any unique wildlife or vegetative habitats. The wetland is to be impacted as a freshwater system and is not located in a lagoon or estuary. It contains no vegetation that is consistent with a saltwater wetland. The retaining wall at the end of the impact area is located 1.7 feet above the mean high water line. Wetland Impacts The proposed 0.63 acre wetland impact area will run approximately 760 linear feet from the existing trail road to the proposed retaining wall. If the wetland were preserved, development would surround the wetland, adversely affecting its long-term functions. Mitigation of the wetland functions is proposed, which will provide greater long-term ecological value than the wetland to be adversely affected. The wetland to be impacted does not provide a unique or special wetland function or good habitat source for fish or wildlife. The wetland does not provide the thick cover that would make it valuable as Black Bear habitat and is so narrow and ephemeral that it would not provide good habitat for aquatic-dependent and wetland-dependent species. Its does not, for instance, provide good habitat for woodstorks due to the lack of a fish population and its closed- in tree canopy. Minnow sized fish (Gambusia) and crabs were seen in portions of the wetland, but those areas are downstream of the proposed area of impact. Mitigation Mitigation is offered as compensation for any wetland impacts as part of an overall mitigation plan for the Marshall Creek DRI. The overall mitigation plan is described in the development order, the mitigation offered for the subject permit and mitigation required by prior permits. A total of 27 acres of the more than 287 acres of wetlands in the total 1,300-acre DRI tract are anticipated to be impacted by the DRI. Approximately 14.5 acres of impacted area out of that 27 acres has already been previously authorized by prior permits. The overall mitigation plan for the DRI as a whole will preserve all of the remaining wetlands in the DRI after development occurs. Approximately one-half of that preserved area already has been committed to preservation as a condition of prior permits not at issue in this case. Also, as part of prior permitting, wetland creation areas have been required, as well as preserved upland buffers which further protect the preserved wetlands. The mitigation area for the project lies within the Tolomato River Basin. The development order governing the total DRI requires that 66 acres of uplands must also be preserved adjacent to preserved wetlands. The overall mitigation plan for the DRI preserves or enhances approximately 260 acres of wetlands; preserves a minimum of 66 acres of uplands and creates enhancement or restores additional wetlands to offset wetland impacts. The preserved wetlands and uplands constitute the majority of Marshall Creek, and Stokes Creek which are tributaries of the Tolomato River Basin, a designated Outstanding Florida Water (OFW). Preservation of these areas prevents them from being timbered and ensures that they will not be developed in the future. The overall DRI mitigation plan provides regional ecological value because it encompasses wetlands and uplands they are adjacent to and in close proximity to the following regionally significant resources: (1) the 55,000 acre Guana- Tolomato-Matanzas National Estuarine Research Reserve; (2) the Guana River State Park; (3) the Guana Wildlife Management Area; (4) an aquatic preserve; (5) an OFW; and (6) the 22,000 acre Cummer Tract Preserve. The mitigation plan will provide for a wildlife corridor between these resources, preserve their habitat and insure protection of the water quality for these regionally significant resources. The mitigation offered to offset wetland impacts associated with Parcel D includes: (1) wetland preservation of 0.52 acres of bottom land forest along the northeast property boundary (wetland EP); (2) wetland preservation of 3.98 acres of bottom land forest on a tributary of Marshall Creek contained in the DRI boundaries (Wetlands EEE and HHH); (3) upland preservation of 2.49 acres, including a 25-foot buffer along the preserved Wetlands EEE and HHH and a 50-foot buffer adjacent to Marshall Creek and preserved Wetland EP; (4) a wetland creation area of 0.82 acres, contiguous with the wetland preservation area; and (5) an upland buffer located adjacent to the wetland creation area. The wetland creation area will be graded to match the grades of the adjacent bottomland swamp and planted with wetland tree species. Small ponds of varying depths will be constructed in the wetland creation area to provide varying hydrologic conditions similar to those of the wetland to be impacted. The wetland creation area is designed so as to not de-water the adjacent wetlands. All of the mitigation lands will be encumbered with a conservation easement consistent with the requirements of Section 704.06, Florida Statutes. The proposed mitigation will offset the wetland functions and values lost through the wetland impact on Parcel D. The wetland creation is designed to mimic the functions of the impact area, but is located within a larger ecological system that includes hardwood wetland headwaters. The long-term ecological value of the mitigation area will be greater than the long-term value of the wetland to be impacted because; (1) the mitigation area is part of a larger ecological system; (2) the mitigation area is part of an intact wetland system; (3) the wetland to be impacted will be unlikely to maintain its functions in the long-term; and (4) the mitigation area provides additional habitat for animal species not present in the wetland to be impacted. Certain features will prevent adverse secondary impacts in the vicinity of the roadway such as: (1) a retaining wall which would prevent migration of wetland animals onto the road; (2) a guard rail to prevent people from moving from the uplands into wetlands; and (3) a vegetated hedge to prevent intrusion of light and noise caused by automotive use of the roadway.
Recommendation Having considered the foregoing Findings of Fact and Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is RECOMMENDED: That a final order be entered granting the subject application for modification of Permit 4-109-0216A-ERP so as to allow construction and operation of the Parcel D project at issue, with the addition of the inclusion of a supplemental permit condition regarding the vegetated natural buffers for Lots 16 through 19 described and determined above. DONE AND ENTERED this 9th day of April, 2001, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 9th day of April, 2001.
Findings Of Fact On November 1, 1982, Respondent Janson filed a Joint Application for a dredge and fill permit from Respondent, Department of Environmental Regulation, and from the Department of the Army Corps of Engineers. The project described in that application involved the construction of an approximately 1,000-square- foot, pile-supported residence, landward of the mean high water line but within the landward extent of Robinson Creek in St. Johns County, Florida. The proposed project also involved the placement of approximately 35 cubic yards of fill and a 30-foot culvert within a small (approximately 4-foot), tidally- influenced roadside ditch for driveway access and parking. The original application sought permission to place part of a concrete driveway and tool shed within the landward extent of Robinson Creek. The project is to be constructed on Lot 47, J.A. Lew Subdivision. Respondent Janson owns Lot 47, as well as Lots 45 and 46, which lots are north of and adjoining Lot 47 and also adjoining Robinson Creek. The next adjoining property owner to the north is the City of St. Augustine, Florida, which presumably owns the street. The adjoining property owner to the south of Lot 47 is Virginia P. Melichar. Neither Melichar nor the City objected to the Department's approval of the dredge and fill permit application. In support of his application, Janson retained the services of a registered surveyor and civil engineer, who performed a survey on Lot 47 to determine the location of the mean high water line with reference to the proposed project. That expert determined the location of the mean high water line to be at elevation 2.4 feet. Accordingly, all work contemplated by the dredge and fill permit is upland from the mean high water line. T.J. Deuerling, an environmental specialist for Respondent, Department of Environmental Regulation, visited the project site on December 13, 1982 and on December 30, 1982 in order to prepare the Department's Biological and Water Quality Assessment. As a result of those site visits, Deuerling recommended to Respondent Janson that he modify his permit application by moving the concrete slab and tool shed from the marsh area onto the uplands. Janson did so revise his application. In spite of the name of the permit being sought by Respondent Janson, the project involves no dredging. However, the culvert and its attendant fill would be placed in the man-made roadside ditch. That ditch constitutes a very weak transitional marsh. Although the culvert will eliminate some vegetation within that ditch, the effect of the elimination will be insignificant on water quality. The pilings for the pile-supported residence will also eliminate a small area of marsh. The anticipated shading caused by the pile-supported residence may impact somewhat on the vegetation in a small area below the residence; however, due to the fact that the floor of the house will be eight feet above the ground, light will still be able to penetrate. Therefore, the vegetation below the pile-supported residence will continue to act as a filter for pollutants. Janson has mitigated the small loss in wetlands by modifying his project so as to remove the concrete slab and tool shed from the marsh area to the uplands. Due to the project's small size, no storm water impact can be expected. Additionally, no evidence was introduced to show a violation of any water quality standard as a result of the proposed project. On March 16, 1983, Respondent, Department of Environmental Regulation, executed its Intent to Issue the dredge and fill permit in accordance with the revised application and subject to the conditions that: (1) turbidity curtains be employed in the ditch during the placement of fill over the culvert to contain any turbidity generated, and (2) construction on the uplands be confined to periods of normal water level conditions. On July 5, 1983, the Department of the Army Corps of Engineers issued its Permit and Notice of Authorization. The essence of the testimony presented by the Petitioners, including that of the employees of the St. Johns River Water Management District, who testified in opposition to the proposed project, is that even though Janson's proposed project would not impact water quality in a way that was either significant or measurable (although no one even suggested any specific water quality standard that might be violated), approval of Janson's permit might set a precedent for other projects which might then have a cumulative impact in some unspecified way at some unspecified location. No evidence was offered to show that Respondent, Department of Environmental Regulation's review of permit applications is other than site specific. Further, no evidence was introduced to show any proposed project anywhere having any impact with which Janson's project could be cumulative. Petitioners Sandquist and Shuler live in the neighborhood of the proposed project, perhaps as close as two blocks away.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered dismissing with prejudice the petition filed herein as to each individual Petitioner and issuing a dredge and fill permit to Respondent Janson in accordance with his revised application. DONE and RECOMMENDED this 13th day of January, 1984, in Tallahassee, Leon County, Florida. LINDA M. RIGOT, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 13th day of January, 1984. COPIES FURNISHED: Stormy Sandquist 3 Aviles Street St. Augustine, FL 32084 Marion C. Snider Volla F. Snider 79 Fullerwood Drive St. Augustine, FL 32084 Carmen Ashton 51 East Park Avenue St. Augustine, FL 32084 Reuben D. Sitton Gail P.Sitton 35 Seminole Drive St. Augustine, FL 32084 Sandra N. Shuler 22 East Park Avenue St. Augustine, FL 32084 Patty Severt Greg Severt 1 Fern Street St. Augustine, FL 32084 Nancy Moore Paul Moore, Jr. 6 Fern Street St. Augustine, FL 32084 John D. Bailey, Jr., Esq. P.O. Box 170 St. Augustine, FL 32085-0170 Charles G. Stephens, Esq. Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32301 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32301
Findings Of Fact The land here involved is located at the southern end of the Acme Improvement District. The northeastern portion of the tract is owned by Petitioner Leonard H. Tolley, and comprises some 15 percent of the total acreage of the tract. The remainder of the tract is owned by Petitioner Strazulla Brothers. The entire tract includes Sections 3 and 4, Township 455 Range 41E and a parcel of land in The Township 44 1/2 S Range 41E adjacent to Sections 3 and 4 and comprises some 1400 acres. The Strazulla property was acquired by Warranty Deed from the Trustees, Internal Improvement Trust Fund, by Philip Strazulla and subsequently conveyed to Petitioner. In 1978 real property taxes on the Strazulla property here involved was $17,453.42. The tract is bounded on the west by the L-40 levee and canal, on the north by Acme Improvement District Dike and C-27 Canal; on the east by property owned by Miller American Industries and on the south by property owned by the South Florida Water Management District. By this application Petitioner proposes to place levees with their borrow canals on the east and south sides of the tract and to construct a 240 acre reservoir adjacent to the L-40 levee by erecting a reservoir retention levee some 1400 feet eastward of the L-40 levee. By installing a 100,000 gallon per minute pump station at the southeast corner of the proposed reservoir, the water presently standing on the property could be drained allowing the eastern portion of the tract to be converted to agricultural use and the remainder converted into 2.5 acre residential sites. The 1972 Palm Beach County land use plan recommended the area here involved be zoned Preservation/Conservation, which effectively precluded development of the property. At that time, Strazulla attempted to sell the property or trade it to a governmental agency for property that could be developed, but without success. In 1978, the Palm Beach County Land Use Advisory Board changed the 1972 land use recommendation to Residential Estate to allow a reasonable use of the property. (Exhibit 7). The property abutting Petitioners' property to the north has been drained and thereon is located an orange grove and, west of the orange grove, 5- acre residential homesites. The property to the east is being developed as residential homesites. The property west of the C-40 canal comprises the Loxahatchee National Wildlife Refuge consisting of some 221 square miles of traditional Everglades wetlands. The property to the south is owned by the South Florida Water Management District and is of a character similar to Petitioners' property. Some two to three miles south of Petitioners' property is an east-west canal. In 1900 the property here involved was located in the eastern part of the Florida Everglades and received the sheet flow that characterized the natural Everglades. This historic hydroperiod has been disrupted by levees at Lake Okeechobee and by various drainage and irrigation canals constructed to render the large tracts of land thereby drained suitable for agriculture. In the immediate vicinity of the property, the L-40 levee and canal, which enclose the Loxahatchee National Wildlife Refuge (hereafter referred to as the conservation area) form a barrier to any sheet flow from this property onto the conservation area. This levee and canal bars practically all interchange of waters between Petitioners' property and the conservation area and is in the process of destroying part of the historical eastern boundary of the Everglades. Erection of the proposed levee on the east and south boundaries of the property would effectively stop the drainage now coming to this property from the east and the drainage from this property to the southeast. The South Florida Water Management District (SFWMD) owns a right-of- way to the east of the L-40 levee which is located in the area proposed by Petitioner for its reservoir. Petitioners' application to encroach on this right-of-way with the proposed reservoir was denied by SFWMD. This denial was based on the environmental impact, county zoning regulations (since changed) and the as yet undetermined effect of back pumping into the conservation areas. (Exhibit 17). Specifically, SFWMD Staff Report (Exhibit 17) found the environmental impact of the project will be: This proposed truck farming operation and residential development will destroy approximately 1100 acres of valuable wetland habitat by drainage. The impact on the 240 acres (60 acres of SFWMD right-of-way) of emergent marsh within the proposed reservoir will be determined by the water level management of the impoundment. A drastic change in water depth or inundation period could result in severe alterations of the present wetlands. An additional 50 acres of marsh will be lost due to dredge and fill operations for levee construction. The entire tract is poorly drained and is under water for considerable portions of the year, with the westernmost portion containing the longest periods and greatest depths of standing water. The soil in the eastern portion of the property is predominantly sandy, with a gray sandy loam layer at depths of 20 to 40 inches. The soil in the central portion of the tract is predominantly sandy, with a gray sandy loam layer at depths greater than 40 inches. The soil in the western portion of the tract is sandy, with a black organic surface layer (muck) 8 to 15 inches thick, underlain by gray sandy layers. Vegetation in the property goes from some pine and cypress in the eastern portion to sawgrass marshes in the western portion, with numerous varieties of plants associated with wet soil and marshy areas. During the proposed construction adequate safeguards can be imposed to prevent excess turbidity from entering State waters. This property comprises a large tract of pristine Everglades habitat for both plants and animals, and is of great value to the ecology of the state. In its undeveloped state it provides a buffer zone of up to two miles eastward for the conservation area. Water presently on the property is predominantly rainwater and of better quality than the water in the C-40 or C-27 canals adjacent to the property. Use of the land for agricultural purposes would increase the risk of water quality degradation caused by water runoff carrying fertilizers, herbicides and pesticides into the proposed reservoir and/or perimeter canals. If excess water on the property is pumped into the C-40 or C-27 canals, degradation of those waters could occur. The proposed development was opposed by the Florida Game and Fresh Water Fish Commission, not only because it would remove these fresh water marshes from the ecosystem and take away an essential habitat for birds and aquatic life, but also would remove a surface water retention basin and vegetation filtration of runoff from adjacent uplands. (Exhibit 16). The Permit Application Appraisal Report (Exhibit 15) which recommended denial of the application found the property acts as a buffer between the agricultural lands to the east and the conservation area and development as proposed would remove this buffer; and that water quality standards may be degraded due to agriculture runoff from the developed property being pumped into C-40 canal. Specifics of how runoff from property would be controlled were not obtained by the Environmental Specialist who prepared Exhibit 15. Pumping the surface waters on the property into a reservoir would reduce the diurnal variation in dissolved oxygen levels in the water and thereby improve water quality from that aspect. Water in the reservoir would be of greater depth than presently exists, thereby reducing photosynthesis and its concomitant benefits to the water quality. On the other hand, the greater depths could result in fewer grasses and more open surface water, thereby allowing more aeration of the water by wind action. Herbicides degrade fairly rapidly, and holding them in a reservoir would allow time to degrade. Many pesticides are water insoluble and would settle to the bottom of the reservoir.
The Issue The issue in this case was whether the Respondent, City of Cape Coral (City), was entitled to an Individual Environmental Resource Permit (Permit) that would allow removal of the Chiquita Boat Lock (Lock) and associated uplands, and installation of a 165-foot linear seawall in the South Spreader Waterway in Cape Coral, Florida.
Findings Of Fact Based on the parties' stipulations and the evidence adduced at the final hearing, the following findings of fact are made: The Parties The Department is the administrative agency of the State of Florida statutorily charged with, among other things, protecting Florida's water resources. As part of the Department's performance of these duties, it administers and enforces the provisions of chapter 373, part IV, Florida Statutes, and the rules promulgated thereunder in the Florida Administrative Code. Pursuant to that authority, the Department determines whether to issue or deny applications for environmental resource permits. The City is a Florida municipality in Lee County. The City is the applicant for the Permit allowing the removal of the Lock and installation of a seawall (Project). The Project is located within the geographic boundary of the City. The South Spreader Waterway is a perimeter canal separating the City's canal system from shoreline wetlands to the west and south, which run the length of Matlacha Pass to the mouth of the Caloosahatchee River at San Carlos Bay.1/ The Association is a Florida non-profit corporation that was created in 1981. The Association was created to safeguard the interests of its members. The Association has approximately 150 members who reside in Matlacha and Matlacha Isles, Florida. A substantial number of its members have substantial interests in the use and enjoyment of waters adjacent to and surrounding Matlacha. The Association's members were particularly interested in protecting the water quality of the surface waters in the area. Matlacha is an island community located to the northwest of Cape Coral, the South Spreader Waterway, and the Lock. Matlacha is located within Matlacha Pass Aquatic Preserve. Matlacha Pass is classified as a Class II waterbody designated for shellfish propagation or harvesting, and is an Outstanding Florida Water (OFW). See Fla. Admin. Code R. 62-02.400(17)(b)36; 62-302.700(9)(h). Petitioner, Karl Deigert, is a resident and property owner in Matlacha. Mr. Deigert is the president of the Association. Mr. Deigert’s house in Matlacha is waterfront. He holds a captain’s license and has a business in which he gives sightseeing and ecological tours by boat of the waters around Matlacha. He fishes in the waters around his property and enjoys the current water quality in the area. He is concerned that removal of the Lock would have negative effects on water quality and would negatively impact the viability of his business and his enjoyment of the waters surrounding Matlacha. Petitioner, Melanie Hoff, is a resident and property owner in St. James City. St. James City is located to the southwest of Cape Coral. Ms. Hoff’s property is located within five nautical miles of the Lock. Ms. Hoff engages in various water sports and fishes in the waters around her property. She moved to the area, in part, for the favorable water quality. She is concerned that removal of the Lock would negatively impact water quality and her ability to use and enjoy waters in the area. Petitioner, Robert S. Zarranz, is a resident and property owner in Cape Coral. Mr. Zarranz’s house in Cape Coral is waterfront. He is an avid fisherman and boater. He is concerned that removal of the Lock would negatively impact water quality, and that the quality of fishing in the area would decline as a result. Petitioner, Yolanda Olsen, is a resident and property owner in Cape Coral. Ms. Olsen’s house in Cape Coral is waterfront. She enjoys watersports and birdwatching in the areas around her property. She is concerned that removal of the Lock would negatively impact water quality, and that her ability to enjoy her property and the surrounding waters would suffer as a result. Petitioner, Jessica Blanks, is a resident and property owner in Cape Coral. Ms. Blanks’ house in Cape Coral is waterfront. She is concerned that removal of the Lock would negatively impact water quality, and that her ability to enjoy her property and the surrounding waters would suffer as a result. Petitioner, Joseph Michael Hannon, is a resident and property owner in Matlacha. Mr. Hannon is a member of the Association. He enjoys boating, fishing, and kayaking in the waters surrounding Matlacha. He is concerned that removal of the Lock would negatively impact water quality, and that his ability to enjoy his property and the surrounding waters would suffer as a result. Petitioner, Debra Hall, did not appear at the final hearing and no testimony was offered regarding her standing. The Project and Vicinity The Project site is 0.47 acres. At the Lock location, the South Spreader Waterway is 200 feet wide, and includes a 125-foot wide upland area secured by two seawalls, the 20-foot wide Lock, a 32-foot wide upland area secured by one seawall, and 23 feet of mangrove wetlands. The Lock is bordered to the north by property owned by Cape Harbour Marina, LLC, and bordered to the south by mangrove wetlands owned by the state of Florida. The 125-foot wide upland area and the 20-foot wide Lock form a barrier separating the South Spreader Waterway from the Caloosahatchee River. The preponderance of the competent substantial evidence established that the South Spreader Waterway behind the Lock is not tidally influenced, but would become tidally influenced upon removal of the Lock. Joint Exhibit 1 at p. 46. The City proposes to remove the Lock and one of the seawalls, reducing the 125-foot upland area to 20 feet. The proposed future condition of the area would include 125 feet of open canal directly connecting the South Spreader Waterway with the Caloosahatchee River. Joint Exhibit 1 at p. 47. The primary purpose of the Lock's removal is to alleviate safety concerns related to boater navigation. The Project's in-water construction includes demolition and removal of the existing Lock, removal of existing fill in the 125-foot upland area, removal of existing seawalls, and construction of replacement seawalls. The City would employ Best Management Practices (BMPs) throughout the course of the Project, including sediment and erosion controls such as turbidity barriers. The turbidity barriers would be made of a material in which manatees could not become entangled. All personnel involved with the Project would be instructed about the presence of manatees. Also, temporary signs concerning manatees would be posted prior to and during all in-water project activities. History of the South Spreader Waterway In the mid-1970's, the co-trustees of Gulf American Corporation, GAC Properties Credit, Inc., and GAC Properties, Inc., (collectively GAC) filed for after-the-fact permits from the Department's predecessor agency (DER), for the large dredge and fill work project that created the canal system in Cape Coral. In 1977, DER entered into CO 15 with GAC to create the North and South Spreader Waterways and retention control systems, including barriers. The Lock was one of the barriers created in response to CO 15. The Spreader Waterways were created to restore the natural hydrology of the area affected by GAC's unauthorized dredging and filling activity. The Spreader Waterways collected and retained surface runoff waters originating from the interior of Cape Coral's canal system. The South Spreader Waterway was not designed to meet water quality standards, but instead to collect surface runoff, then allow discharge of the excess waters collected over and through the mangrove wetlands located on the western and southern borders of the South Spreader Waterway. This fresh water flow was designed to mimic the historic sheet flow through the coastal fringe of mangroves and salt marshes of the Caloosahatchee River and Matlacha Pass estuaries. The fresh water slowly discharged over the coastal fringe until it finally mixed with the more saline waters of the estuaries. The estuarine environments located west and south of the Lock require certain levels of salinity to remain healthy ecosystems. Restoring and achieving certain salinity ranges was important to restoring and preserving the coastal fringe. In 1977 GAC finalized bankruptcy proceedings and executed CO 15. CO 15 required GAC to relinquish to the state of Florida the mangrove wetlands it owned on the western and southern borders of the South Spreader Waterway. This land grant was dedicated by a warranty deed executed in 1977 between GAC and the state of Florida. The Petitioners' expert, Kevin Erwin, worked as an environmental specialist for DER prior to and during the construction of the Spreader Waterways. Mr. Erwin was DER's main representative who worked with the GAC co-trustees to resolve the massive dredge and fill violation and design a system to restore the natural hydrology of the area. Mr. Erwin testified that the Lock was designed to assist in retention of fresh water in the South Spreader Waterway. The fresh water would be retained, slowed down, and allowed to slowly sheet flow over and through the coastal fringe. Mr. Erwin also testified that the South Spreader Waterway was not designed to allow direct tidal exchange with the Caloosahatchee River. In Mr. Erwin's opinion, the South Spreader Waterway appeared to be functioning today in the same manner as originally intended. Breaches and Exchange of Waters The Department's second amended notice of intent for the Project, stated that the Project was not expected to contribute to current water quality violations, because water in the South Spreader Waterway was already being exchanged with Matlacha Pass and the Caloosahatchee River through breaches and direct tidal flow. This second amended notice of intent removed all references to mitigation projects that would provide a net improvement in water quality as part of the regulatory basis for issuance of the permit. See Joint Exhibit 1 at pp. 326-333. The Department's witnesses testified that waters within the South Spreader Waterway currently mix with waters of the Caloosahatchee River when the Lock remains open during incoming and slack tides. A Department permit allowed the Lock to remain open during incoming and slack tides. Department witness, Megan Mills, the permitting program administrator, testified that she could not remember the exact date that permit was issued, but that it had been "a couple years." The location of breaches in the western and southern banks of the South Spreader Waterway was documented on another permit's drawings and pictures for a project titled "Cape Coral Spreader Waterway Restoration." See Cape Coral Ex. 9. Those documents located three breaches for repair and restoration identified as Breach 16A, Breach 16B, and Breach 20. The modeling reports and discussion that support the City's application showed these three breaches connect to Matlacha Pass Aquatic Preserve. Breach 20 was described as a connected tidal creek. Breach 16A and 16B were described as allowing water movement between Matlacha Pass and the South Spreader Waterway only when relatively high water elevations occurred in Matlacha Pass or in the South Spreader Waterway. The Department's water quality explanation of "mixing," was rather simplistic, and did not consider that the waterbody in which the Project would occur has three direct connections with an OFW that is a Class II waters designated for shellfish propagation or harvesting. Such a consideration would require the Department to determine whether to apply the OFW permitting standards, and the Class II waters permitting criteria in section 10.2.5 of the Environmental Resource Permit Applicant's Handbook, Volume I. See Fla. Admin Code R. 62-330.302(1)(a); 62-4.242(2); and 62-302.400(17)(b)36. The Caloosahatchee River, at its entrance to the South Spreader Waterway, is a Class III waters restricted for shellfish harvesting. The mouth of the Caloosahatchee River is San Carlos Bay, which is a Class II waters restricted for shellfish harvesting. There was no evidence that the Department's regulatory analysis considered that the waterbody in which the Project would occur directly connects to Class III waters that are restricted for shellfish harvesting, and is in close proximity to Class II waters that are restricted for shellfish harvesting. See Fla. Admin. Code R. 62-302.400(17)(b)36. and 62-330.302(1)(c).2/ Total Nitrogen The City's expert, Anthony Janicki, Ph.D., testified that nitrogen concentrations in the Caloosahatchee River were higher than in the South Spreader Waterway in the years 2017 and 2018. Thus, he opined that if the Lock is removed, water from the South Spreader Waterway would not negatively impact the Caloosahatchee River. However, the City's application was supported by an analysis, with more than a decade of monitoring data, which showed nitrogen concentration values were comparable inside the South Spreader Waterway and in the Caloosahatchee River. Dr. Janicki also used the Department's Hydrologic Simulation Program – FORTRAN (HSPF) watershed model to estimate the Total Nitrogen (TN) loading that would enter the Caloosahatchee River through the Chiquita Lock. Dr. Janicki estimated that TN loading to the Caloosahatchee River, after removal of the Chiquita Lock, would amount to 30,746 pounds per year. The Caloosahatchee River is listed as impaired for nutrients and has a TN Total Maximum Daily Load (TMDL) that was set by the Department in 2009. Dr. Janicki opined that removing the Lock would not result in adverse impacts to the surrounding environment. But the Petitioners obtained his concession that his opinion was dependent on the City's completion of additional water quality enhancement projects in the future as part of its obligations under the Caloosahatchee Estuary Basin Management Action Plan (BMAP) for achieving the TN TMDL. Dr. Janicki additionally testified that the potential TN loading to the Caloosahatchee River did not anticipate an actual impact to the River's water quality because the TN loads from the South Spreader Waterway were already factored into the 2009 TMDL. He essentially testified that the Lock's removal was anticipated and was factored into the model when the TMDL was established in 2009. Thus, the Petitioners proved by a preponderance of the competent and substantial evidence that the Department and the City were not aligned regarding how the City's application would provide reasonable assurances of meeting applicable water quality standards. The Petitioners proved by a preponderance of the competent and substantial evidence that the City relied on future projects to provide reasonable assurance that the removal of the Lock would not cause or contribute to violations of water quality standards in the Caloosahatchee River and the Matlacha Pass Aquatic Preserve. The Petitioners proved by a preponderance of the competent and substantial evidence that the Department relied on a simplistic exchange of waters to determine that removal of the Lock would not cause or contribute to violations of water quality standards in the Caloosahatchee River and the Matlacha Pass Aquatic Preserve. Water Quantity and Salinity The engineering report that supports the City's application stated that when the Lock is removed, the South Spreader Waterway behind the Lock will become tidally influenced. With the Lock removed, the volume of daily water fluxes for the South Spreader Waterway would increase from zero cubic meters per day to 63,645 cubic meters per day. At the location of Breach 20, with the Lock removed, the volume of daily water fluxes would drastically decrease from 49,644 cubic meters per day to eight cubic meters per day. Dr. Janicki testified that Breach 20 was connected to a remnant tidal creek that meanders and eventually empties into an embayment. The evidence demonstrated that the embayment is Punta Blanca Bay, which is part of the Matlacha Pass Aquatic Preserve. Dr. Janicki opined that Breach 20 was an area of erosion risk and sediment transport into downstream mangroves that would be significantly reduced by removing the Lock. He explained that the reductions in flow would result in reductions in velocities through Breach 20 and in the South Spreader Waterway itself. Mr. Erwin testified that Breach 20 was not a "breach."3/ He described it as the location of a perpendicular intersection of the South Spreader Waterway with a small tidal creek, which connected to a tidal pond further back in the mangroves. Mr. Erwin testified that an "engineered sandbag concrete structure" was built at the shallow opening to limit the amount of flow into and out of this tidal creek system. But it was also designed to make sure that the tidal creek system "continued to get some amount of water." As found above, Lock removal would drastically reduce the volume of daily water fluxes into and out of Breach 20's tidal creek system. Mr. Erwin also testified that any issues with velocities or erosion would be exemplified by bed lowering, siltation, and stressed mangroves. He persuasively testified, however, that there was no such evidence of erosion and there were "a lot of real healthy mangroves." Mr. Erwin opined that removal of the Lock would cause the South Spreader Waterway to go from a closed, mostly fresh water system, to a tidal saline system. He described the current salinity level in the South Spreader Waterway to be low enough to support low salinity vegetation and not high enough to support marine organisms like barnacles and oysters. The City's application actually supports this opinion. Using the Environmental Fluid Dynamics Code (EFDC) model developed by Dr. Janicki for this Lock removal project, comparisons were made describing the salinity distribution within the South Spreader Waterway. The model was run with and without the Lock, for both a wet and dry year. Dr. Janicki testified, and the model showed, that removal of the Lock would result in increased salinity above the Lock and decreased salinity downstream of the Lock. However, he generally opined that the distribution of salinities was well within the normal ranges seen in this area. The City's application also concluded that the resultant salinities did not fall outside the preferred salinity ranges for seagrasses, oysters, and a wide variety of fish taxa. However, Dr. Janicki did not address specific changes in vegetation and encroachment of marine organisms that would occur with the increase in salinity within the South Spreader Waterway. Secondary Impacts to the Mangrove Wetlands Mr. Erwin testified that the mangroves located on the western and southern borders of the South Spreader Waterway are currently in very good health. He additionally testified that loss of the current fresh water hydraulic head and an increase in salinity within the South Spreader Waterway would negatively impact the health of the mangrove wetlands. In addition, the City's application stated that removing the Lock would result in a drop in the water level of one to one and a half feet within the South Spreader Waterway. Mr. Erwin credibly and persuasively testified that a drop in water level of only a few inches would have negative effects on the health of mangroves, and that a drop of a foot could result in substantial mangrove die-off. Mr. Erwin testified that the mangrove wetlands adjacent to the South Spreader Waterway consist of a variety of plants and algae in addition to mangroves. He described the wetlands as a mangrove community made up of different types of mangroves, and epiphytic vegetation such as marine algae. This mangrove community provides habitat for a "wide range of invertebrates." He further testified that these plants and algae uptake and transform the nutrients that flow over and through the mangrove wetlands before they reach the receiving waters. Thus, the mangrove wetlands on the western and southern borders of the South Spreader Waterway serve to filter nutrients out of the water discharged from the Waterway before it reaches Matlacha Pass and the Caloosahatchee River. Mr. Erwin's credible and persuasive testimony was contrary to the City's contention that Lock removal would not result in adverse impacts to the mangrove wetlands adjacent to the South Spreader Waterway. The City and the Department failed to provide reasonable assurances that removing the Lock would not have adverse secondary impacts to the health of the mangrove wetlands community adjacent to the South Spreader Waterway. Impacts to Fish and Wildlife, Including Endangered and Threatened Species The Florida Fish and Wildlife Conservation Commission (FWC) reviewed the City's application and determined that if BMPs for in-water work were employed during construction, no significant adverse impacts on fish and wildlife were expected. For example, temporary signs concerning manatees would be posted prior to and during all in-water project activities, and all personnel would be instructed about the presence of manatees. The FWC determination only addressed direct impacts during in-water construction work. The City's application contained supporting material that identified the major change resulting from removal of the Lock that may influence fish and wildlife in the vicinity of the Project, was the opportunity for movement to or from the South Spreader Waterway canal system. Threatened and endangered species of concern in the area included the Florida manatee and the smalltooth sawfish. The City's application stated that literature review showed the smalltooth sawfish and the Florida manatee utilized non-main-stem habitats, such as sea-wall lined canals, off the Caloosahatchee River. The City cited studies from 2011 and 2013, which showed that non-main-stem habitats were important thermal refuges during the winter, and part of the overall nursery area for smalltooth sawfish. The City concluded that removal of the Lock "would not be adverse, and would instead result in increased areas of useable habitat by the species." However, the Petitioner's expert witness, John Cassani, who is the Calusa Waterkeeper, testified that there is a smalltooth sawfish exclusion zone downstream of the Lock. He testified that the exclusion zone is a pupping area for smalltooth sawfish, and that rapid salinity fluctuations could negatively impact their habitat. The City also concluded that any impacts to the Florida manatee would not be adverse, "and would instead result in increased areas of useable habitat by the species, as well as a reduction in risk of entrapment or crushing in a canal lock system." At the same time, the City acknowledged that "watercraft collision is a primary anthropogenic threat to manatees." The City's literature review included a regional assessment by FWC's Fish and Wildlife Research Institute (FWRI) from 2006. Overall, the FWRI report concluded that the mouth of the Caloosahatchee River, at San Carlos Bay, was a "hot spot" for boat traffic coinciding with the shift and dispersal of manatees from winter refugia. The result was a "high risk of manatee- motorboat collisions." In addition, testimony adduced at the hearing from an 18-year employee of Cape Harbour Marina, Mr. Frank Muto, was that Lock removal would result in novice boaters increasing their speed, ignoring the no-wake and slow-speed zones, and presenting "a bigger hazard than the [L]ock ever has." Boater Navigation Concerns Oliver Clarke was the City’s principal engineer during the application process, and signed the application as the City's authorized agent. Mr. Clarke testified that he has witnessed boater congestion at the Lock. He also testified that lack of boating experience and weather concerns can exacerbate the boater congestion issues at the Lock. Petitioners presented the testimony of Mr. Frank Muto, the general manager of Cape Harbour Marina. Mr. Muto has been at the Cape Harbour Marina for 18 years. The marina has 78 docks on three finger piers along with transient spots. The marina is not currently subject to tidal flows and its water depth is between six and a half and seven and a half feet. He testified that they currently have at least 28 boats that maintain a draft of between four and a half and six feet of water. If the water depth got below four feet, those customers would not want to remain at the marina. Mr. Muto further testified that the Lock was in place when the marina was built, and the marina and docks were designed for an area with no tidal flow. Mr. Muto also testified that he has witnessed several boating safety incidents in and around the Lock. He testified that he would attribute almost all of those incidents to novice boaters who lack knowledge of proper boating operations and locking procedures. Mr. Muto additionally testified that there is law enforcement presence at the Lock twenty-four hours a day, including FWC marine patrol and the City's marine patrol.
Conclusions For Petitioners: J. Michael Hannon, Qualified Representative 2721 Clyde Street Matlacha, Florida 33993 John S. Turner, Esquire Peterson Law Group Post Office Box 670 Fort Myers, Florida 33902 For Respondent City of Cape Coral: Craig D. Varn, Esquire Amy Wells Brennan, Esquire Manson Bolves Donaldson Varn, P.A. 106 East College Avenue, Suite 820 Tallahassee, Florida 32301 Steven D. Griffin City of Cape Coral Assistant City Attorney Post Office Box 150027 Cape Coral, Florida 33915-0027 For Respondent Department of Environmental Protection: Kirk Sanders White, Esquire Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, RECOMMENDED that: The Department of Environmental Protection enter a final order denying Individual Environmental Resource Permit Number 244816-005 to the City of Cape Coral for removal of the Chiquita Boat Lock. The final order deny Petitioners' request for an award of attorney's fees and costs. DONE AND ENTERED this 12th day of December, 2019, in Tallahassee, Leon County, Florida. S FRANCINE M. FFOLKES Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 12th day of December, 2019.
Recommendation Based upon the findings of fact and conclusions of law recited above, it is recommended that petitioner's application for a permit to connect his canal to the Caloosahatchee River be DENIED. Respectfully submitted and entered this 22nd day of December, 1976, in Tallahassee, Florida. DIANE D. TREMOR Hearing Officer Division of Administrative Hearings Room 530, Carlton Building Tallahassee, Florida 32304 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 22nd day of December, 1976.
The Issue There are two sets of issues to be considered in this matter which require separate determination. The issues in D.O.A.H. Case No. 83-2133 pertain to a notice of violation and orders for corrective action filed against Michael H. Hatfield related to the alleged construction of a causeway from a mainland shoreline to an island owned by Hatfield. In particular, that action by the Department alleges certain violations of environmental law and demands restoration of the area in which the causeway was constructed. The companion case, D.O.A.H. Case No. 84-0465, concerns Hatfield's request to construct a causeway from the mainland to the island in a location apart from the existing causeway. The Department has denied Hatfield's request for necessary permission to install that causeway.
Findings Of Fact Michael H. Hatfield is the owner of property in Marion County, Florida. That property is located on Lake Nicatoon, a 307 acre nonmeandered water body. Lake Nicatoon is a Class III water body as defined in Chapter 17-3, Florida Administrative Code. To gain access to the island from the mainland, Hatfield sought permission from the Department of Environmental Regulation to construct a causeway from the mainland to the island. The area between the mainland and the island is subject to water level fluctuations in that at times it is essentially dry and other times is under the waters of Lake Nicatoon. His application for environmental permits was filed on May 13, 1980. A copy of that application may be found as Department's Exhibit No. 4, admitted into evidence. His proposed project calls for the placement of approximately 525 cubic yards of fill in wetlands and littoral zones adjacent to the mainland and island. Per the application, the causeway would be 7 yards wide at the bottom and a length of approximately 73 yards and is to be constituted of sand and crushed concrete block. In particular, Hatfield wishes access to allow construction of a residence on the island and to gain entrance to the residence after construction. The Department of Environmental Regulation reviewed the application and on May 27, 1980, made a request to Hatfield to provide additional information related to his proposal. A copy of that request for additional information may be found as part of Department Environmental Regulation's Exhibit No. 3, admitted into evidence. Among the items requested was information from local government related to that entity's approval of the project in accordance with Section 253.124, Florida Statutes. This request was made based upon the perception by the Department of Environmental Regulation that Lake Nicatoon was found in the Florida Lakes Gazateer of Meandered Water bodies. The Department continued to operate on this erroneous assumption throughout the permit review process. Unknown to the Department, the lake was a nonmeandered lake which was discovered by Hatfield and verified on September 8, 1980, through an affidavit of the Division Director of State Lands for the State of Florida. A copy of that affidavit may be found as Hatfield's Exhibit No. 2, admitted into evidence. In effect, although the Department had made a good faith request for information pursuant to chapter 253.124, Florida Statutes, that information was not necessary because Lake Nicatoon is nonmeandered and not subject to Chapter 253, Florida Statutes, jurisdiction. Additionally, the requested hydrographic information pertaining to Chapter 253, Florida Statutes, was not needed. Among the other items requested in the way of additional information was item No. 6, pertaining to the placement of fill. That request was not complied with. Requested information related to a plan view was not complied with. Requested information in the category of "notes and drawings" was not complied with. Requested information pertaining to plans for complying with state water quality standards for Class III waters as related in Section 17- 3.121, Florida Administrative Code, was not complied with. These materials were relevant to the permit review process and the request for the information was never modified nor abandoned by the Department, notwithstanding discussions between the parties in an attempt to reconcile their differences in the permit assessment process. Those suggested alternatives to grant Hatfield access were not satisfactory to Hatfield and the original description of his project as set forth in his application of May 1980, has remained constant throughout the permit review process to include the final hearing. Generally, the parties' discussion of the installation or a bridge between the mainland and the island or the placement of a temporary steel road during the course of construction of his residence on the island did not promote a modified permit application. Finally the indication by staff members of the Department of Environmental Regulation that the project envisioned by his original application would not likely be approved did not cause a change in the obligation to respond to the request for additional information. Even though Hatfield became aware that it was unlikely that the staff would look with favor upon the project as proposed, in making its recommendation as to the issuance or nonissuance of the permit, the staff attitudes in the review process could only have become accepted with finality at the point of entering the Recommended Order. Consequently, it was incumbent upon Hatfield to respond to the request for additional information, in that the information sought was relevant to a consideration of the project which would be examined in the course of the final hearing. The discussions, related to the grant of permission to gain access by placement of a structure between the landslide and the island, entered into by the Department and Hatfield, briefly mentioned before, involved 1) the possibility of the construction of a bridge, 2) use of a metal roadway during the buildout of his residence and 3) his proposal as offered through the application. The bridge proposal advanced by Hatfield was for a span of 20 to 30 feet end the Department desired a span of 200 feet. The reason for the length of bridge required by the Department was to assure protection of a reasonable amount of the lake ecosystem between the landside and the island. Hatfield found the Department's proposed bridge length to be unacceptable due to financial reasons. He likewise did not like the idea of a temporary utilization of a steel roadway to the island during the construction of his residence. Hatfield preferred a permanent road allowing vehicular traffic from the mainland to the island. In conjunction with this alternative offered by the Department, Hatfield could later access the island by utilization of a boat on those occasions when the waters of Lake Nicatoon stood between the landside and the island. While Respondent's application for dredge and fill permit was being considered, an inspection of the property made in the summer of 1982, revealed that a causeway connecting the mainland and Hatfield's island property had been constructed. This causeway is depicted in red on Department's Exhibit No. 10, admitted into evidence, a series of aerial photographs. Ground shots of the causeway may be found as Department of Environmental Regulation's photographic Exhibits No. 8 and No. 9, admitted into evidence. The causeway was primarily constructed by the dredge of material and placement of the material immediately next to the dredge site with an overlay of offsite fill. Respondent was responsible for the construction of this causeway. The causeway is not found in the location contemplated by his permit application and permission was not given by the Department of Environmental Regulation to construct the causeway. This construction occurred in an area dominated by the vegetative species beak rush (Rhynchospora tracyi). Having placed the causeway in this location, Hatfield has created a stationary installation which caused pollution in the course of that construction and can reasonably be expected to be a future source of pollution, in that the dredging and placement of fill and the effects of the structure after construction have emitted and shall emit in the future, substances that are harmful to plant and animal life, in contravention of the Department of Environmental Regulation's rules. By this installation, an alteration in the chemical, physical and biological integrity of the waters of the state has been occasioned by the destruction of submerged land vegetational communities which provide water treatment, and food and habitat for fish and wildlife. When the fill was placed, the filtration and assimilation system of Lake Nicatoon was adversely affected through the removal of existing wetland vegetation. Were the applicant granted the opportunity to install the proposed causeway, the same adverse effects or problems could be expected with that installation. Having discovered the existence of the causeway, and after warning Hatfield that this installation was in violation of regulatory statutes and rules related to the Department's responsibility in environmental matters, Hatfield was served with a notice of violation and orders for corrective action from the Department of Environmental Regulation. The date of this action was June 1983. A copy of that document may be found as Department's Exhibit No. 3, admitted into evidence. In this same time frame, the Department continued to evaluate the permit application of Hatfield related to the proposed causeway and an application appraisal for that proposal was made on June 6, 1983. A copy of that appraisal may be found as Department's Exhibit No. 2, admitted into evidence. Subsequent to that time, and having failed to receive the aforementioned requested additional information from the Respondent, the Department issued its intent to deny the application related to the proposed causeway. A copy of the intent to deny may be found as Department's Exhibit No. 5, admitted into evidence. The date of the denial was November 4, 1983. A more detailed examination of the area in question on the northern shoreline of the lake on the mainland side, shows that natural vegetation has been replaced with a Bahla type of grass. The gradient dropping toward the lake proper reveals upland grasses giving way to submerged species such as maiden cane (Panicum hemitom), pickerelweed (Pontederia lanceolata) and pond lilies (Nymphaea). In this area, the transitional species to be found include St. John's wort (Hypericum fasculatum) and switch grass (Panicum virgatum). Between the landside and the island, in the direction of the island, there are less rooted plants. The dominant plants in this vicinity are pond lilies. The distance to be traversed between the landside and the island related to landward extent of the lake on the landside and island where the proposed causeway would be located is approximately 550 feet, and net the 225 feet described in the application. As you approach the island from the landside, the last approximately 150 feet along the proposed causeway's alignment is dominated by transitional freshwater species to include doheen holly (Ilex cassine), button bush (Cephalanthus occidentalis), St. John's wort (Hypericum fasculatum), and switch grass (Panicum virgatum). The island, itself, is dominated by live oak and sable palm. To summarize, the area between the landside shoreline along the lake and the island shoreline, is dominated by submerged and transitional freshwater species as found in Rule 17-4.02(17), Florida Administrative Code. In the area of the proposed causeway are found detrital feeders, the most numerous of which are amphipods. There ore also larval insects and gastropods, bivalves and freshwater shrimp. Crayfish, frogs and tadpoles are found in this area. In addition, species of fish include mosquito fish, least killfish, shiners, blue spotted sunfish, juvenile largemouth bass, silverside and juvenile catfish. Bird species observed in the area are blue heron, snowy egret, lympkins and ibis. Soft-shell turtles have also been observed in the vicinity of the project site. Should the construction of the causeway be allowed, short and long-term adverse effects on surface waters of Lake Nicatoon can be expected and these effects will be negative. With installation of the causeway, there would be a permanent elimination of the water bodies' littoral zone vegetative community which is important in converting available dissolved nutrients into food material in the aquatic ecosystem. The vegetation also assists in the cleansing of the ambient water and by that action reducing pollution loading. With the construction of the causeway, state water quality standards related to biological integrity, Section 17-3.121(7), Florida Administrative Code; nutrients, Section 17-3.121(17), Florida Administrative Code; and turbidity, Section 17-3.061(2)(r), Florida Administrative Code, can reasonably expected to be violated. Hatfield has failed to give reasonable assurances that the short and long-term impacts of the construction of the causeway would not violate and continue to violate water quality standards as alluded to. These problems as described exist while the unauthorized causeway remains. Hatfield, by actions involving private parties and the State of Florida, Department of Environmental Regulation, has sought necessary easements to gain access to his island property. While successful in this undertaking, these successes do not include the grant of a prohibition against the Department of Environmental Regulation performing its regulatory responsibility. In particular the decisions in the Circuit Court of the Fifth Judicial Circuit, in and for Marion County, Florida, Case No. 83-1826-C, Michael Hatfield, Plaintiff v. State of Florida, Department of Environmental Regulation, Defendant, granting partial Summary Judgment for the plaintiff and Defendant's Motion to Dismiss do not bar the Department from fulfillment of its regulatory charge. A copy of these decisions of court are found as Hatfield's Exhibit No. 7, admitted into evidence. In order to return the area where the unauthorized causeway has been placed to its prior existing condition, it would be necessary to remove the fill material and return elevations at the site to their prior level before the construction of the causeway. In addition, beak rush should be replanted in the areas where this dominant vegetation has been removed. An amount of $30.75 has been incurred in the way of cost to prosecute D.O.A.H. Case No. 83-2133